摘要
在油气钻井、深部地层钻探中,聚晶金刚石钻头有着广泛的应用。聚晶金刚石复合片(PDC)由聚晶金刚石层与硬质合金基体所组成。由于聚晶金刚石层与硬质合金基体的热膨胀系数等性质差异,PDC在烧结冷却后内部会存在巨大的残余应力。为降低PDC内部的残余应力,本文提出了一种梯度结构金刚石复合片的制备技术。通过以熔融沉积成型加烧结的工艺方法,确定了梯度结构金刚石复合片的制备技术路线;对制备出的梯度结构金刚石复合片的微观形貌及残余应力的分布情况特征等进行分析;进行室内钻进试验验证了梯度结构金刚石复合片的钻进性能。结果表明,熔丝制造工艺制备的梯度结构金刚石复合片在聚晶金刚石层和梯度层界面处存在1.4 GPa的压应力,显著提高了层间结合能力,相比常规复合片钻进效率提升约36%且使用寿命更长。
随着深地深海钻探技术的进步,地球深部资源,尤其是如天然气、页岩气、干热岩等新兴能源领域的开采将迎来井喷式发展时期,这必然会进一步带动用于勘探、钻井钻头上的核心部件之一的金刚石复合片需求
金刚石复合片是由聚晶金刚石层和硬质合金基底(衬底)在高温高压条件(1300~2000 ℃,5~7 GPa)下复合而成的超硬复合材
随着增材制造(Additive Manufacturing, AM)技术的发展,越来越多种功能梯度材料通过AM方法制备出来,这为梯度结构金刚石复合片的制备提供了充分的研发基础。比如Wang
本文提出了梯度结构金刚石复合片的熔丝制造工艺制备技术。通过以熔融沉积成型加烧结的工艺方法,确定了梯度结构金刚石复合片的制备技术路线;利用扫描电镜、拉曼光谱等测试方法对制备出的梯度结构金刚石复合片的形貌特征、内部微观结构特征及残余应力的分布情况特征等进行分析;进行室内钻探实验对制备的梯度结构金刚石复合片的实际钻进性能完成检验,验证了梯度结构金刚石复合片的钻进性能。这些工作为梯度结构金刚石复合片的生产制备与推广应用奠定了基础。
梯度结构金刚石复合片的制备技术,以熔丝制造工艺为核心,主要分为前期的成型工艺和后处理工艺,技术路线示意如

图1 梯度结构金刚石复合片的成型工艺流程
Fig.1 Gradient‑structured diamond compact moulding process

图2 梯度结构金刚石复合片的后处理工艺流程
Fig.2 Post‑treatment process flow of gradient‑structured diamond compact
熔丝制造技术制备梯度结构金刚石复合片的具体流程包括:(1)将硬质合金粉末、金刚石粉料与专用粘结剂充分混合,然后将混合料置于密炼设备中进行密炼形成均匀分布的状态,使其具备一定可流动性。(2)密炼结束后取出密炼料放入单螺杆挤出造粒机中,在螺杆的挤压作用下挤出并切割造粒。(3)随后将粒度相对均一的颗粒料依次放入拉丝机中挤出丝材。(4)将丝材放入FDM打印机中,丝材由送丝齿轮传送至挤出喷嘴,熔融后的丝料从喷嘴挤出后通过层层堆叠的形式沉积在打印平台上,最终打印出梯度结构金刚石复合片各结构层生坯。(5)打印完成后将生坯按顺序装入铌杯,再放入高温真空气氛炉脱脂处理。(6)脱脂完成后,将硬质合金基体与生坯组装成合成块,在六面顶压机中进行合成,最终通过修磨得到梯度结构金刚石复合片。
研究中用于制备梯度结构金刚石复合片的材料主要包括硬质合金粉末、金刚石微粉以及专用粘结剂。其中硬质合金粉末是由87%WC粉末和13%Co粉末组成,简称为YG13,是复合片中硬质合金基体常用的配方。相关材料的基本性能见
材料名称 | 粒度/μm | 密度/(g·c |
---|---|---|
WC | <4 | 15.63 |
Co | <2 | 8.90 |
金刚石 | 20~30 | 3.52 |
根据以往研究基
代号 | 高度/mm | 结构层 | 材料组成 | ||
---|---|---|---|---|---|
粉末(体积分数50%) | 粘结剂(体积分数50%) | ||||
D0 | 11.2 | 硬质合金基体 | 100%YG13 |
专用粘结剂 (热塑性聚合物及一些必要的添加剂) | |
D5 | 0.2 | 梯度层 | 95%YG13 | 5%金刚石微粉 | |
D10 | 0.2 | 90%YG13 | 10%金刚石微粉 | ||
D15 | 0.2 | 85%YG13 | 15%金刚石微粉 | ||
D20 | 0.2 | 80%YG13 | 20%金刚石微粉 | ||
D30 | 0.2 | 70%YG13 | 30%金刚石微粉 | ||
D40 | 0.2 | 60%YG13 | 40%金刚石微粉 | ||
D60 | 0.2 | 40%YG13 | 60%金刚石微粉 | ||
D80 | 0.2 | 20%YG13 | 80%金刚石微粉 | ||
D100 | 1.0 | 聚晶金刚石层 | 100%金刚石 |
制备的复合片样品经切割和表面抛光,选用净化后的金刚石表面,通过微区Raman光谱对其残余应力进行表征。微区Raman光谱是在一激光共焦拉曼光谱仪上进行的。其中各测试条件为:扫描范围50~4000 c
拉曼光谱与固体分子的振动相关,通过测量不同位置因应力而造成的拉曼光谱位移大小及方向来计算材料内部的残余应力大小及种类,其应力值与峰值偏移成正比。通过建立应力模型,Raman测试已经能够较好的表征金刚石膜的残余应力问
(1) |
式中:——残余应力;——无应力下金刚石的Raman峰频率值,1332 c
为评估梯度结构金刚石复合片的力学性能,进行了抗冲击韧性测试、弯曲强度测试和努氏硬度测试。冲击韧性是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,反映材料内部的细微缺陷和抗冲击性能。弯曲强度是指材料在弯曲负荷作用下破裂或达到规定弯矩时能承受的最大应力,此应力为弯曲时的最大正应力。它反映了材料抗弯曲的能力,用来衡量材料的弯曲性能。努氏硬度与显微维氏硬度试验一样,使用较小的力以特殊形状的压头进行试验,测量压痕对角线求得硬度值。所有测试均按检测标准执行。
室内微钻试验是为了对利用上述工艺制备出的梯度结构金刚石复合片进行实际钻进性能的评估。试验在如

图3 微钻试验平台
Fig.3 Micro drilling platform

图4 梯度结构金刚石复合片样品及微观结构特征
Fig. 4 Samples of gradient‑structured diamond compact and microstructural features

图5 不同分界面的微观结构特征
Fig.5 Microstructural features of different interfaces
为进一步验证熔丝制造工艺制备的梯度结构金刚石复合片的性能,对在同一条件下合成的5组复合片,进行抗冲击韧性、弯曲强度和努氏硬度检测,性能测试结果如
性能指标 | 检测结果 | 检测标准 |
---|---|---|
抗冲击韧性/(J·c | 11 | GB/T 3851-2015 |
弯曲强度/GPa | 1.455 | GB/T 1817-2017 |
努氏硬度/GPa | 37.3 | GB/T 18449.1-2009 |
通过拉曼光谱法测定了梯度结构金刚石复合片侧面各点的拉曼光谱,各检测点位如

图6 梯度结构金刚石复合片检测点位示意
Fig.6 Schematic diagram of inspection points of gradient structure diamond composite sheet

图7 梯度结构金刚石复合片侧面沿轴向所测各点的拉曼峰位及其对应的残余应力
Fig.7 Raman peak positions and their corresponding residual stresses at the points measured along the axial direction on the side of a gradient‑structured diamond compact
为了进一步验证梯度结构复合片的实钻效果,以13.44 mm×4 mm的PDC切削齿为例,将通过熔丝制造工艺制备的梯度结构金刚石复合片切削齿钎焊到两翼型微钻头体上(如

图8 梯度结构金刚石复合片锚杆钻头
Fig.8 Gradient structure diamond composite anchor bit
复合片 | 总钻深/mm | 总用时/s | 钻进效率/(mm· | 备注 |
---|---|---|---|---|
常规复合片 | 1800 | 1221 | 1.47 | 崩片 |
梯度结构复合片 | 1972 | 982 | 2.01 | 可用 |
测试结果表明,梯度结构金刚石复合片的平均钻进效率高于常规复合片(钻进效率提升36%),且未出现崩片现象。钻进测试后的钻头如

图9 钻进后钻头照片
Fig.9 Photographs of drill bits after drilling
(1)本研究通过熔丝制造工艺流程进行了梯度结构金刚石复合片的制备。结果表明,通过工艺熔丝制造工艺能够成功制备出梯度结构金刚石复合片成品。
(2)通过微观结构表征发现,梯度结构金刚石复合片内部具有明显的梯度过渡结构层,能够实现从硬质合金基体到聚晶金刚石层的过渡。
(3)通过拉曼光谱检测残余应力发现,在梯度层与聚晶金刚石层的界面处存在1.4 GPa的压应力,表明梯度过渡层能够有效增强复合片的结合效果。
(4)通过室内微钻试验发现,梯度结构金刚石复合片相比常规复合片钻进效率提升约36%。实验表明梯度结构金刚石复合片具有钻进效率高、稳定性好、寿命长等优点。
参考文献(References)
刘畅.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL].新华社,2021-3-13. [百度学术]
LIU Chang. Outline of the Fourteenth Five-Year Plan for the National Economic and Social Development of the People’s Republic of China and Vision 2035[EB/OL]. Xinhua News Agency,2021-3-13. [百度学术]
汪海阁,黄洪春,毕文欣,等.深井超深井油气钻井技术进展与展望[J].天然气工业,2021,41(8):163-177. [百度学术]
WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra‑deep oil/gas well drilling technologies: Progress and prospect[J]. Natural Gas Industry, 2021,41(8):163-177. [百度学术]
陈朝然.坚硬地层钻探用复合超硬材料(PDC)研制及性能研究[D].长春:吉林大学,2021. [百度学术]
CHEN Chaoran. Development and performance research of polycrystalline diamond compact for hard rock drilling[D]. Changchun: Jilin University, 2021. [百度学术]
方啸虎,崔祥仁,谢德龙.近年来钻探用超硬材料的发展与展望[J].钻探工程,2021,48(S1):18-24. [百度学术]
FANG Xiaohu, CUI Xiangren, XIE Delong. Development and prospect of the super hard materials applied to the drilling industry in recent years[J]. Drilling Engineering, 2021,48(S1):18-24. [百度学术]
杨金华,郭晓霞.PDC钻头技术发展现状与展望[J].石油科技论坛,2018,37(1):33-38. [百度学术]
YANG Jinhua, GUO Xiaoxia. The present status and outlook of PDC bit technology[J]. Petroleum Science and Technology Forum, 2018,37(1):33-38. [百度学术]
陈新海.巴彦河套新区异形齿PDC钻头研究与应用[J].钻探工程,2022,49(5):127-135. [百度学术]
CHEN Xinhai. Research and application of special‑shaped tooth PDC bits in Bayanhetao New Area[J]. Drilling Engineering, 2022,49(5):127-135. [百度学术]
冯云春.龙凤山气田火山岩地层个性化PDC钻头设计与应用[J].钻探工程,2024,51(2):94-101. [百度学术]
FENG Yunchun. Design and application of personalized PDC bit for volcanic rock formation in Longfengshan Gas Field[J]. Drilling Engineering, 2024,51(2):94-101. [百度学术]
高明洋,张凯,周琴,等.高温硬地层钻进中PDC钻头切削齿磨损研究[J].探矿工程(岩土钻掘工程),2018,45(10):185-189. [百度学术]
GAO Mingyang, ZHANG Kai, ZHOU Qin, et al. Wear of PDC cutters in high temperature hard formation drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(10):185-189. [百度学术]
汤凤林,赵荣欣,Нескоромных B. B.,等.新型耐磨损ONYX切削具制作的PDC钻头[J].钻探工程,2024,51(3):111-117. [百度学术]
TANG Fenglin, ZHAO Rongxin, Neskoromnyh V. V., et al. PDC drill bit made of new wear‑resisting cutting elements ONYX[J]. Drilling Engineering, 2024,51(3):111-117. [百度学术]
荣准,杨学军,张航,等.五宝场硬塑性地层斧形曲面PDC齿破岩性能研究[J].钻探工程,2024,51(2):85-93. [百度学术]
RONG Zhun, YANG Xuejun, ZHANG Hang, et al. Study on the rock breaking performance of axe‑shape cambered PDC cutters in the hard plastic formation in Wubaochang[J]. Drilling Engineering, 2024,51(2):85-93. [百度学术]
Yahiaoui M, Gerbaud L, Paris J Y, et al. A study on PDC drill bits quality[J]. Wear, 2013, 298: 32-41. [百度学术]
Huang H, Zhao B, Wei W, et al. Effect of cobalt content on the performance of polycrystalline diamond compacts[J]. International Journal of Refractory Metals and Hard Materials, 2020,92:105312. [百度学术]
Baek M S, Park H S, Lee J, et al. Effect of diamond particle size on the microstructure and wear property of high pressure high temperature (HPHT) sintered polycrystalline diamond compact (PDC)[J]. Korean Journal of Metals and Materials, 2017,55(11):790-797. [百度学术]
Zhang F, Lu Y, Xie D, et al. Experimental study on the impact resistance of interface structure to PDC cutting tooth[J]. Engineering Failure Analysis, 2022:106503. [百度学术]
Johnson D. M., Klug F. J. Polycrystalline diamond compact cutter with reduced failure during brazing: U.S.6042463[P]. 2000-03-28. [百度学术]
仝斐斐,王海阔,刘俊龙,等.金刚石复合片脱钴技术研究[J].超硬材料工程,2017,29(4):1-7. [百度学术]
TONG Feifei, WANG Haikuo, LIU Junlong, et al. Research on the method of cobalt removal of polycrystalline diamond compact[J]. Superhard Material Engineering, 2017,29(4):1-7. [百度学术]
王彩利,刘慧苹,方海江.聚晶金刚石复合片的室温去钴工艺及耐磨性研究[J].超硬材料工程,2019,31(2):30-34. [百度学术]
WANG Caili, LIU Huiping, FANG Haijiang. A study on Cobalt removal technique and wear resistance of polyerystalline diamond compact at indoor temperature[J]. Superhard Material Engineering, 2019,31(2):30-34. [百度学术]
Deng F., Hao C., Deng W., et al. Effect of different acid corrosion reagents on de‑cobalt effect and performance of PDC at room temperature[J]. Diamond and Related Materials, 2020,106:107702. [百度学术]
Swaminathan K, Sangeetha D M. Thermal analysis of FGM plates-A critical review of various modeling techniques and solution methods[J]. Composite Structures, 2017,160:43-60. [百度学术]
贾志宏,王贵成.梯度复合片的组织与耐热性[J].农业机械学报,2005(6):114-116,137. [百度学术]
JIA Zhihong, WANG Guicheng. Microstructure and performance of gradient polycrystalline diamond compact[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005(6):114-116,137. [百度学术]
曹品鲁,刘宝昌,殷琨.梯度结构聚晶金刚石复合片残余热应力的有限元分析[J].探矿工程(岩土钻掘工程),2006,33(3):50-53. [百度学术]
CAO Pinlu, LIU Baochang, YIN Kun. Finite element analysis of residual thermal stress in functionally graded polycrystalline diamond compact[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2006,33(3):50-53. [百度学术]
Rong L, Zhang S, Wu D, et al. Optimization of functionally graded polycrystalline diamond compact based on residual stress: Numerical simulation and experimental verification[J]. International Journal of Refractory Metals and Hard Materials, 2023,117:106414. [百度学术]
Wang Q, Shi J, Zhang L, et al. Impacts of laser cladding residual stress and material properties of functionally graded layers on titanium alloy sheet[J]. Additive Manufacturing, 2020,35:101303. [百度学术]
张绍和,苏舟,刘磊磊,等.SLS和FDMS制造超薄金刚石锯片对比研究[J].金刚石与磨料磨具工程,2021,41(1):38-43. [百度学术]
ZHANG Shaohe, SU Zhou, LIU Leilei, et al. Comparative study on ultra‑thin diamond saw blades made by SLS and FDMS[J]. Diamond & Abrasives Engineering, 2021,41(1):38-43. [百度学术]
Su Z., Zhang S.H., Liu L. L., Wu J. J. Microstructure and performance characterization of Co‑based diamond composites fabricated via fused deposition molding and sintering[J]. Journal of Alloys and Compounds, 2021,871:159569. [百度学术]
Rong L, Zhang S, Wu D, et al. Optimization of functionally graded polycrystalline diamond compact based on residual stress: Numerical simulation and experimental verification[J]. International Journal of Refractory Metals and Hard Materials, 2023,117:106414. [百度学术]
徐国平,尹志民,陈启武,等.激光拉曼光谱法测定金刚石复合片残余应力[J].中南大学学报(自然科学版),2010,41(4):1310-1314. [百度学术]
XU Guoping, YIN Zhimin, CHEN Qiwu, et al. Micro‑Raman stress of polycrystalline diamond compact[J]. Journal of Central South University (Science and Technology), 2010,41(4):1310-1314. [百度学术]
Yang X., Deng F. Synthesis and characterisation of Ø62mm polycrystalline diamond compact[J]. Diamond and Related Materials, 2019,100:107594. [百度学术]
Catledge S. A., Vohra Y. K., Ladi R., et al. Micro‑Raman stress investigations and X-ray diffraction analysis of polycrystalline diamond (PCD) tools[J]. Diamond and related materials, 1996,5(10):1159-1165. [百度学术]