4/15/2025, 11:51:30 PM 星期二
网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

超高温井固井水泥浆体系研究与应用  PDF

  • 高元 1,2
  • 李小江 1,2
  • 刘仍光 1,2
1. 页岩油气富集机理与有效开发国家重点实验室,北京 102206; 2. 中石化石油工程技术研究院有限公司,北京 102206

中图分类号: TE256P634

最近更新:2025-01-20

DOI:10.12143/j.ztgc.2025.01.015

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

针对目前高温水泥浆抗高温外掺料以石英砂为主,水泥石200 ℃下高温强度衰退导致环空密封失效问题,研发了具有水化活性的富硅铝材料,其加量占水泥30%~70%时200 ℃×20.7 MPa×30 d下水泥石高温强度不衰退;将富硅铝材料作为水泥石高温强度稳定材料,优选配套外加剂,构建了富硅铝基超高温固井水泥浆体系,100~200 ℃下API失水量<50 mL,稠化时间150~500 min可调,水泥浆综合性能良好;水泥石200 ℃×20.7 MPa养护10、60、120、180 d抗压强度均>26 MPa,未见高温强度衰退。超声波强度曲线显示600 h内水泥石强度持续增长直至稳定发展,水泥石高温力学性能优异。SEM和XRD分析表明富硅铝材料参与水泥水化反应,消除体系中氢氧化钙,生成高温性能优良的铝氧四面体和硅氧四面体相互键接的空间三维网状结构,以及托勃莫来石、钙硅铝石等水化产物维持水泥石的高温强度稳定,水泥石结构致密。该水泥浆体系在干热岩固井中应用1个井次,固井质量优质,截至目前1000 d水泥环密封良好。

0 引言

深层油气资源丰富,中国石油勘探开发正加速向深地进

1-2。中国石化“深地工程”“深地一号”油气田——顺北油气田垂直深度超过8000 m的井已超45口,定向井最深9330 m;中石油深地塔科1井设计井深11100.00 m,万米深井井底温度高约210 ℃,压力约130 MPa。深井高温高压环境对水泥浆性能和水泥环密封性能的要求越来越高,研究表明水泥石高温强度劣化是导致水泥环密失效的重要原因之3。现场抗高温固井水泥浆使用石英砂作为水泥石高温强度稳定材料,多以掺混30%~70%的不同粒径石英砂等为4-6,其原理为通过石英砂参与水化反应减少水泥石中氢氧化钙[CH]和水化硅酸二钙[C2SH]含量,形成低钙硅比水化硅酸钙[CSH],生成高温下强度较高、性能较为稳定的硬钙硅石[C6S6H]和雪钙硅石[C5S6H5],以保持水泥石高温强度稳7-11。但是大量研究发现,即使是经过加砂量及颗粒级配优化的固井水泥体系在高温(200 ℃)高压环境下仍会出现明显的强度衰退现象。造成这种现象的主要原因是高加砂量下产生了更多无定形[CSH]胶水化产物,提高了水泥石短期强度;但无定形[CSH]凝胶在高温下的自身结构的粗化,以及随着养护龄期延长雪钙硅石[C5S6H5]会转变为硬钙硅石[C6S6H]导致的晶粒穿插搭接的网状结构减少,加之硬钙硅石[C6S6H]的力学性能低于雪钙硅石[C5S6H5],使加石英砂水泥石性能严重劣化,因此无法从根本上解决水泥石高温强度衰退问12-17。研究表明,改性铝酸岩水泥、磷酸盐水泥石具有较好的抗高温性18-19,或者在目前硅酸盐油井水泥中添加含铝矿物、粉煤灰等火山灰活性材料作为水泥石高温强度稳定材料,也可一定程度上改善水泥石的高温力学性20-21,但鲜有现场应用的报道。本文从水化产物生成机理出发,开发了一种具有高火山灰活性的富硅铝材料,可与目前固井用硅酸盐油井水泥掺混,通过改变水泥水化产物提高水泥石高温强度稳定性,并据此构建了抗高温水泥浆体系,在干热岩井中进行了现场应用,效果良好。

1 富硅铝基抗高温水泥浆体系研究

1.1 富硅铝水泥石强度稳定材料研究

通过对多种富含硅、铝氧化物的粉煤灰、煤矸石、高岭土等矿物高温煅烧后,再使用球磨机研磨生成具有水化活性的富硅铝材料,其可与水泥发生水化反应,生成含硅、铝元素的水化产物以改善单掺SiO2时生成的水化产物耐温性能差的问题。室内对比了富硅铝材料与嘉华G级水泥的成分与粒径,结果如表1所示。

表1  富硅铝材料与嘉华G级水泥对比
Table 1  Comparison of silicon‑alumina material with jiahua G class cement
种类

SiO2含量/

%

Al2O3含量/

%

粒径中值/

μm

比表面积/

(m2·kg-1)

富硅铝材料 >50 >40 12.448 500
嘉华G级 约17 约3 13.835 390

表1可知,富硅铝材料主要化学组成为SiO2和Al2O3,合计占比超90%,且粒径中值较嘉华G级更小,比表面积较嘉华G级更大。得益于富硅铝材料较大的比表面积,其具有微集料效应,可降低水泥石孔隙率,改善孔结构;同时通过参与水泥水化反应,协同改善水泥石综合性

22

室内将不同比例的富硅铝材料掺混至油井水泥中,然后加入4%降失水剂和不同加量的水,统一配制成密度1.88 g/cm3的常规水泥浆,考察不同加量对水泥浆流变性和水泥石高温抗压强度的影响,结果如表2所示。

表2  富硅铝材料对水泥浆综合性能的影响
Table 2  Effect of silica‑aluminum material on rheological properties of cement slurry

加量/

%

流性指数n

稠度系数k/

(Pa·sn)

抗压强度/MPa
3d30d
30 0.80 0.39 14.9 16.7
40 0.83 0.35 17.9 22.8
50 0.85 0.31 24.1 27.4
70 0.55 2.88 26.3 31.9

注:  配方为G级+X%富硅铝材料+4%降失水剂+X%纯水

表2可知,200 ℃下30%~70%范围内随着富硅铝材料加量和养护时间增加,水泥石抗压强度均持续增加,且30 d抗压强度较3 d时更高。富硅铝材料加量为30%时200 ℃×20.7 MPa×30 d抗压强度可达16.7 MPa,70%时200 ℃×20.7 MPa×30 d抗压强度可达31.9 MPa,比3 d强度增加46%。现场可根据水泥浆密度需求和水泥浆稠度情况,在30%~70%范围内适量掺混,均可满足水泥石高温强度大于14 MPa的需求。

1.2 水泥浆体系构建与评价

综合考虑水泥浆的流变性和水泥石力学性能,富硅铝材料加量70%时流性指数仅为0.55,水泥浆流动性差,现场泵注较困难,因此室内以50%的富硅铝材料掺混量为基础,研选其他配套外加剂与外掺料构建超高温水泥浆体系。研选了AMPS三元共聚物高温降失水剂,AMPS上的磺酸基团和AA上的羧酸基团共同增强降失水剂对水泥颗粒的吸附及包覆能力,同时AMPS和DMAA通过自由基聚合,协同增强降失水剂的的热稳定性,实现了降失水剂在加量3%~8%时满足70~200 ℃范围内API失水量<50 mL的要求;研选了抗高温缓凝剂,通过吸附、螯合、分散和润湿等作用,在水泥颗粒表面与钙离子作用形成溶剂化膜,同时在[CSH]和[CH]表面形成极为致密的水化层,从而抑制了晶核的生长和发育,降低水泥颗粒的水化速度,满足1.5%~8%加量时100~200 ℃范围内稠化时间(90~500 min)可调,且水泥石强度发展快。优化降失水剂、缓凝剂等助剂加量,构建了两套富硅铝基超高温水泥浆体系。

1号体系为1.88 g/cm3抗高温水泥浆体系,配方为:G级水泥+50%富硅铝材料+6%降失水剂+7%缓凝剂+50%水。

该体系在190 ℃下其API失水量44 mL,流动度21 cm,190 ℃×140 MPa×70 min稠化时间333 min(图1),稠化曲线平稳。室内开展了200 ℃下10、60、180 d水泥石高温高压强度评价,结果如表3所示。由表3可知,经过200 ℃高温养护180 d后,水泥石强度为30.1 MPa,较10 d和60 d分别增加约14.4%和9.9%。

图1  1号配方体系190 ℃稠化曲线

Fig.1  Thickening curve of the 1# cement slurry at 190℃

表3  富硅铝水泥石200 ℃高温强度发展情况
Table 3  Development of silica‑rich aluminum material cement stonehigh temperature strength at 200℃
养护时间/d抗压强度/MPa
1 24.3
10 26.3
60 27.4
180 30.1

为了进一步验证水泥石高温强度的稳定性,避免出现强度先升高再降低的问题,室内使用超声波强度测试仪监测200 ℃下水泥石高温强度情况,结果如图2所示。由图2可知,200 ℃下富硅铝基水泥石高温强度良好,在210 h内强度稳定上涨,210~680 h间强度曲线平稳,未发生强度衰退问题,呈现优异高温力学性能。

图2  1号配方水泥石200 ℃高温强度曲线

Fig.2  Strength curve of the 1# silica‑aluminum set cement at 200℃

2号体系为1.88 g/cm3超高温弹韧性水泥浆体系,配方为:G级水泥+50%富硅铝材料+2%降失水剂+10%胶乳+8%纳米液硅+1.2%消泡剂+3.5%缓凝剂+43%水。

该体系在200 ℃下API失水量48 mL,流动度20 cm,200 ℃稠化时间150~500 min可调,稠化过渡时间<10 min(如图3所示),SPN值<1,水泥浆性能良好。

图3  2号体系200 ℃稠化曲线

Fig.3  Thickening curve of the 2# cement slurry at 200℃

室内进一步考察了在200 ℃×20.7 MPa条件下养护4 d和120 d后水泥石力学性能,利用三轴压力机测试水泥石在20 MPa围压下抗压强度和杨氏模量。200 ℃下4 d水泥石抗压强度为23.5 MPa,弹性模量为4.8 GPa;120 d时抗压强度为29.6 MPa,杨氏模量为5.3 GPa,抗压强度较4 d时提高25.9%,表现出优异的高温力学性能,有利于保证密封完整

23-24

使用扫面电镜对1号配方200 ℃养护60 d的水泥石微观结构进行观察分析,其结构如图4所示。

图4  1号配方水泥石微观结构

Fig.4  Microstructure of the 1# silica‑alumina set cement

图4可知,放大100倍后观察,水泥石微观结构致密,未发现裂纹,进一步放大至20000倍后观察,水泥产物致密充填孔隙之中。水泥石中未发现氢氧化钙[CH]晶体,孔隙中未观察到纤维状或网状产物,但有新型柱状产物生成,并进一步对水化产物进行XRD分析,结果如图5所示。

图5  富硅铝水泥石XRD分析

Fig.5  XRD analysis of silica‑alumina set cement

图5可知,水化产物除C3S、C2S外,还生成了高温下具有高强度的托勃莫来石、水钙铝榴石等新型含铝水化产物,协同增强了水泥石高温强度稳定性,而单掺石英砂时的水化产物主要为[CSH]、雪钙硅石[C5S6H5]和硬钙硅石[C6S6H]。

2 富硅铝材料改善水泥石高温强度机理分析

富硅铝材料为一种具有较高水硬活性的材料,原子排列不规则,呈非晶态,可参与水泥水化反应,具有火山灰效应和微集料效

25-26

(1)火山灰效应:富硅铝材料中大量的硅氧、铝氧离子团断溶出,Al原子从富硅铝材料玻璃体中解离,在水化过程中Al固溶到水化硅酸钙[CSH]当中,取代水化硅酸钙[CSH]中的Si原子,从而将硅氧四面体转换成铝氧四面体,并随着聚合反应程度的不断提高,铝氧四面体逐渐增多并与硅氧四面体相互键接构成空间三维网状结构,从而达到改善水泥石力学性能的目的。

(2)微集料效应:富硅铝材料与水泥水化反应生成的水化硅酸钙[CSH]、水化硅铝酸钙凝胶[C2ASH8]、水化铝酸钙凝胶[C4AH13]等水化产物优化了孔隙结构,使水泥石形成密实充填结构和自紧密堆积体系,增强了水泥石致密性。

(3)高温强度稳定性:富硅铝材料中的SiO2和Al2O3与氢氧化钙[CH]反应,降低水泥石碱性,同时生成低钙硅比水化硅酸钙凝胶和具有三维结构的硅铝酸盐凝胶,该凝胶比短链水化硅酸钙[CSH]高温强度和稳定性更好。此外,水化产物中大量的柱状硅钙铝石[Ca3Al2(SiO43-y(OH)4y]和雪钙硅石[C5S6H]具有良好的高温强度和稳定性,共同维持高温下水泥石高温强度稳定。

3 现场应用

该富硅铝基抗高温水泥浆体系在干热岩井中应用1井次。该井三开完钻井深4002 m,井底温度209 ℃,三开固井一次性封固段长3620 m,其中裸眼封固段长2117 m,平均井径扩大率17.2%。该井采用富硅铝基超高温水泥浆体系,由于使用现场水泥掺混50%富硅铝材料时混配困难,且水泥浆稠度过大,流动度仅17 cm,因此将富硅铝材料掺混比例降至35%,充分利用粉煤灰中富含SiO2和Al2O3,且具有较高火山灰活性的特性,通过掺混45%的粉煤灰在保障水泥石高温强度的基础上,优化水泥浆流变性。水泥浆配方如下:G级水泥+35%富硅铝材料+45%粉煤灰+5%降失水剂+7.5%缓蚀剂+1%早强剂+1%分散剂+66%水。密度1.85 g/cm3,180 ℃下API失水量44 mL,流动度21 cm,领浆稠化时间357 min,尾浆稠化时间238 min。现场入井水泥浆密度1.83 g/cm3,领浆42 m3,尾浆24 m3,到量碰压。候凝72 h后测声幅显示2400 m以深井段平均声幅<15%。截至目前,该井水泥环密封有效期超1000 d,未发生水泥环密封失效问题。

4 结论与建议

(1)富硅铝材料可参与高抗硫油井水泥水化反应,通过改变水化产物类型与水泥石微观结构提高水泥石高温强度,在掺混30%~70%之间时均能保障水泥石200 ℃下高温强度不衰退。

(2)富硅铝基超高温水泥浆体系综合性能优异,水泥石高温力学性能稳定,现场应用结果表明,其可用于干热岩井固井,保障水泥环长效密封完整性。

(3)建议进一步研究单掺富硅铝材料、混掺不同比例硅粉或粉煤灰时,更高温度更长龄期的宏观力学性能、水化产物以及微观结构的演变规律,以进一步拓展富硅铝基超高温水泥浆的应用场景。

参考文献(References)

1

汪海阁黄洪春纪国栋.中国石油深井、超深井和水平井钻完井技术进展与挑战[J].中国石油勘探2023283):1-11. [百度学术] 

WANG HaigeHUANG HongchunJI Guodonget al. Progress and challenges of drilling and completion technologies for deep,ultra‑deep and horizontal wells of CNPC[J]. China Petroleum Exploration2023283):1-11. [百度学术] 

2

王志刚王稳石张立烨.万米科学超深井钻完井现状与展望[J].科技导报20224013):27-35. [百度学术] 

WANG ZhigangWANG WenshiZHANG Liyeet al. Present situation and prospect of drilling and completion of 10000 meter scientific ultra deep wells[J]. Science & Technology Review20224013):27-35. [百度学术] 

3

蒋国盛郑少军代天.纳米二氧化硅在固井水泥浆中的应用研究进展[J].钻探工程2021481):68-74. [百度学术] 

JIANG GuoshengZHENG ShaojunDAI Tianet al. Research status of nano‑silica application in well cementing slurry[J]. Drilling Engineering2021481):68-74. [百度学术] 

4

郤一臻赵福金荆京.山西干热岩GR1井高温固井技术研究与实践[J].钻探工程2022496):42-47. [百度学术] 

XI YizhenZHAO FujinJING Jinget al. Research and practice of cementing slurry technology for Well GR1 in Shanxi high temperature hot dry rock[J]. Drilling Engineering2022496):42-47. [百度学术] 

5

刘玲榕.抗高温水泥浆体系研究及应用[J].探矿工程(岩土钻掘工程)2018459):29-33. [百度学术] 

LIU Lingrong. Research and application of thermostable cement slurry system[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling)2018459):29-33. [百度学术] 

6

肖夏.高温固井水泥石力学变形及材料改性效果研究[D].成都西南石油大学2018. [百度学术] 

XIAO Xia. Study on mechanical deformation and material modification of high temperature cementing cement[D]: Chengdu: Southwest Petroleum University2018. [百度学术] 

7

张国光王春雨代丹.高温高压下石英砂粒径对油井水泥石性能的影响[J].钻井液与完井液2022394):466-471. [百度学术] 

ZHANG GuoguangWANG ChunyuDAI Danet al. The effects of particle size of silica flour on the performance of oil well cement at high temperature and high pressure[J]. Drilling Fluid & Completion Fluid2022394):466-471. [百度学术] 

8

桑来玉.硅粉对水泥石强度发展影响规律[J].钻井液与完井液2004216):41-43,49. [百度学术] 

SANG Laiyu. Law of silica powder influence on cement stone strength development[J]. Drilling Fluid & Completion Fluid2004216):41-43,49. [百度学术] 

9

张颖陈大钧罗杨.硅砂对稠油热采井水泥石强度影响的室内试验[J].石油钻采工艺2010325):44-47,52. [百度学术] 

ZHANG YingCHEN DajunLUO Yanget al. Laboratory study on grain size of silica in strength recession of heavy oil thermal recovery cement[J]. Oil Drilling & Production Technology2010325):44-47,52. [百度学术] 

10

汪海萍谭玉叶吴姗.尾砂级配对充填体强度的影响及优化[J].有色金属(矿山部分)2014664):26-30. [百度学术] 

WANG HaipingTAN YuyeWU Shanet al. Effects and optimization of tailings gradation on the backfill strength[J]. Nonferrous Metals (Mining Section)2014664):26-30. [百度学术] 

11

庞学玉秦建鲲王治国.深层超高温水泥浆体配方及其强度衰退机理[J].天然气工业2023437):90-100. [百度学术] 

PANG XueyuQIN JiankunWANG Zhiguoet al. Formula of cementing slurry system for ultra‑high temperature conditions of deep wells and its strength retrogression mechanism[J]. Natural Gas Industry2023437):90-100. [百度学术] 

12

李宁庞学玉艾正青.200℃加砂硅酸盐水泥配方优化设计及强度衰退机理[J].硅酸盐学报20204811):1824-1833. [百度学术] 

LI NingPANG XueyuAI Zhengqinget al. Composition optimization and strength decline mechanism of oil well cement slurry at 200℃[J]. Journal of the Chinese Ceramic Society20204811):1824-1833. [百度学术] 

13

姚晓葛荘汪晓静.加砂油井水泥石高温力学性能衰退机制研究进展[J].石油钻探技术2018461):17-23. [百度学术] 

YAO XiaoGE ZhuangWANG Xiaojinget al. Research progress of degradation of mechanical properties of sand‑containing cement in high temperature regimes[J]. Petroleum Drilling Techniques2018461):17-23. [百度学术] 

14

王成文周伟陈新.纳米SiO2溶胶对高温加砂油井水泥石强度作用规律及机制[J].中国石油大学学报(自然科学版)2021456):79-86. [百度学术] 

WANG ChengwenZHOU WeiCHEN Xinet al. Effect of nano‑SiO2 Sol on strength of cement with addition of silica sands under high temperature[J]. Journal of China University of Petroleum (Edition of Natural Science)2021456):79-86. [百度学术] 

15

Jupe A CWilkinson A PLuke Ket al. Class H cement hydration at 180°C and high pressure in the presence of added silica[J]. Cement and Concrete Research2007385):660-666. [百度学术] 

16

Caritey J P. Brady J. Performance of thermal cements with different weighting materials[C]// Paper presented at the SPE/IADC Drilling Conference. Amsterdam, The Netherlands2013: SPE-163544-MS. [百度学术] 

17

Salehpour A GPershikovaeChougnet-Sirapian Aet al. Novel steam‑resilient cement system for long‑term steam injection well integrity: case study of a steam flooded field in Indonesia[C]//Paper presented at the SPE Unconventional Resources Conference and Exhibition-Asia Pacific. Brisbane, Australia2013: SPE-166994-MS. [百度学术] 

18

张尚枫宋茂林张朝阳.磷酸盐改性铝酸盐水泥的研究与应用进展[J].建筑材料学报2024279):824-831,845. [百度学术] 

ZHANG ShangfengSONG MaolinZHANG Chaoyanget al. Progress of research and applications in phosphate modified calcium aluminate cement[J]. Journal of Building Materials2024279):824-831,845. [百度学术] 

19

万向臣张健陈小荣.页岩油地层固井用改性铝酸盐水泥的水化行为及性能[J].油田化学2023404):614-620,626. [百度学术] 

WAN XiangchenZHANG JianCHEN Xiaorong. Hydration behavior and properties of modified aluminate cement for well cementing in shale oil formation[J]. Oilfield Chemistry2023404):614-620,626. [百度学术] 

20

周崇峰费中明李德伟.一种新型超高温固井水泥石抗强度衰退材料[J].钻井液与完井液2022391):71-75. [百度学术] 

ZHOU ChongfengFEI ZhongmingLI Deweiet al. Research on a new material to prevent the strength decline of set cement under ultra‑high temperature[J]. Drilling Fluid & Completion Fluid2022391):71-75. [百度学术] 

21

赵峰曾雪玲龙丹.超高温固井水泥添加剂研选及工程性能评价[J].钻采工艺2023464):131-136. [百度学术] 

ZHAO FengZENG XuelingLONG Danet al. Development and engineering performance evaluation of additives for ultra‑high temperature cement slurry[J]. Drilling & Production Technology2023464):131-136. [百度学术] 

22

刘业金周长顺.钢渣粉-偏高岭土再生混凝土力学性能及微观结构的研究[J].工业建筑2022522):133-138,157. [百度学术] 

LIU YejinZHOU Changshun. Study on mechanical properties and microstructure of recycled aggregate concrete containing steel slag powder and metakaolin[J]. Industrial Construction2022522):133-138,157. [百度学术] 

23

张永涛邓成辉王家栋.高炉矿渣改性铝酸盐水泥的性能研究[J].重庆科技学院学报(自然科学版)2022243):45-51. [百度学术] 

ZHANG YongtaoDENG ChenghuiWANG Jiadonget al. Research on properties of aluminate cement modified by blast furnace slag[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition)2022243):45-51. [百度学术] 

24

诸华军吴其胜张长森.富硅铝质活性填料提高油井水泥石性能的研究[J].建筑材料学报2013164):576-581. [百度学术] 

ZHU HuajunWU QishengZHANG Changsenet al. Improved performance of oil well cement stone by active filler of silicon‑rich alumina[J]. Journal of Building Materials2013164):576-581. [百度学术] 

25

丁士东陆沛青郭印同.复杂环境下水泥环全生命周期密封完整性研究进展与展望[J].石油钻探技术2023514):104-113. [百度学术] 

DING ShidongLU PeiqingGUO Yintonget al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments[J]. Petroleum Drilling Techniques2023514):104-113. [百度学术] 

26

高德利刘奎王宴滨.页岩气井井筒完整性失效力学机理与设计控制技术若干研究进展[J].石油学报20224312):1798-1812. [百度学术] 

GAO DeliLIU KuiWANG Yanbinet al. Some research advances in the failure mechanism and design&control technologies of shale gas well integrity[J]. Acta Petrolei Sinica20224312):1798-1812. [百度学术]