摘要
天然气水合物储层具浅埋藏、弱固结、低渗透、高泥质、非均质等特点,钻采过程中易出现严重的出砂问题,是制约天然气水合物安全高效开采的“瓶颈”之一。现有的天然气水合物储层防砂技术主要来源于常规油气开采中常用的防砂方法,防砂精度控制和稳产增产矛盾突出。为此,本文提出了一种天然气水合物储层超声雾化防砂排水采气方法,配合挡砂介质在有效防住10 µm以上砂的同时,将水雾化成5 µm左右的小水滴产出,降低水的携砂能力并加速水气产出,进而实现连续排水产气。基于该方法搭建了简易实验模拟评价装置,进行了初步的模拟实验。实验结果表明该方法具有一定的可行性,水气可以通过雾化片的锥孔不断产出。但是由于储层砂中还存在大量直径小于雾化片锥孔直径的泥质成分,雾化装置还需针对泥质成分的存在做进一步优化,否则泥质成分将堵塞在雾化片锥孔附近降低雾化片的振荡频率,造成排水产气的中止。这些初步的工作可以为天然气水合物储层防砂增产提供新的思路。
天然气水合物是由小分子天然气和水在特定温度压力条件下形成的一种固体非化学计量的化合
然而,上述试采产气量离商业开采还有一段不小距离。究其原因,主要是相比于常规油气储层,天然气水合物储层具有浅埋藏、弱固结、低渗透、高泥质、非均质等特
目前针对水合物储层的防砂方法存在以下问题:(1)防砂精度不易确定,无法达到有效防砂的效果;(2)在防砂的同时制约了排水产气。基于上述问题,本文提出了一种水合物储层超声雾化防砂提产方法。配合挡砂介质在有效防住10 µm以上砂的同时,将水雾化成5 µm左右的小水滴产出,降低水携砂能力的同时增强排水降压效果,实现连续排水产气。基于该方法,搭建了实验模拟评价装置,并进行了初步的模拟实验。
搭建的实验模拟装置主要由快拆透明反应釜、雾化装置、水气收集釜、压力传感器、可燃气体检测仪组成,见

图1 水合物储层超声雾化防砂评价装置示意
Fig.1 Schematic diagram of the ultrasonic atomization sand control evaluation device

图2 雾化片及电源电路示意
Fig.2 Atomization unit and power supply circuit

图3 实验流程
Fig.3 Experimental flow chart
其中在挡砂介质上部铺垫一层约5 mm厚度的砂粒(见
当快拆反应釜内并未放置挡砂介质和砂粒样品时,甲烷水合物样品分解,将存在分解水,甲烷气和未分解水合物固体三相。当雾化装置未开启时,无水气从雾化片锥孔产出。这是由于分解水在雾化片的锥孔处形成了流动阻力,气体无法穿过水从锥孔排出。并且此时甲烷水合物分解产生的气体压力较小,这部分压差无法有效驱替出水。当雾化装置开启后,雾化片底部出现明显的气流产出(

图4 甲烷水合物雾化排水产气实验
Fig.4 Experiment of methane hydrate atomization for water drainage and gas recovery
在甲烷水合物分解实验的基础上,我们将砂粒敷设在挡砂介质上部,然后再在砂粒层的上部快速放置形成好的甲烷水合物。甲烷水合物由于处于室温,温度升高分解形成的分解水渗流到砂粒层,再到达挡砂介质下部雾化片中的锥孔中。此时快拆反应釜内,除了分解水、气、未分解甲烷水合物外,还有砂粒(

图5 甲烷水合物雾化防砂排水产气实验
Fig.5 Experiment of methane hydrate atomization for sand control, and water drainage and gas recovery

图6 收集气压力
Fig.6 Pressure of the collected gas
上述测试初步表明,超声雾化在水合物储层的防砂排水采气应用中具有一定可行性。其防砂的主要原理是通过挡砂介质在精细防砂的同时,通过雾化片的高频振动,对水产生振动、变形、泵效、渐缩/渐扩运动,形成单独的小水滴产

图7 雾化防砂排水产气机理
Fig.7 Mechanism of sand control, and water drainage and gas recovery by atomization
通过甲烷水合物及组合沉积物的雾化实验对比,可以发现,纯甲烷水合物的雾化排水产气速度明显高于后者。这是由于一部分较细的泥质成分穿过挡砂介质后到达锥孔附近形成堵塞造成的。

图8 雾化片锥孔微观示意
Fig.8 Micro view of the conical holes
(根据朱庭旺等重绘
in the atomizing plate
本文提出了一种水合物储层超声雾化防砂排水采气方法,并基于提出的方法搭建了简易模拟实验装置。实验结果表明,超声雾化对于水合物储层防砂排水采气具有一定的可行性。通过实验发现水合物分解水中溶解有甲烷气体,可以随着雾化形成的小水滴一起产出。后续通过改善挡砂介质和雾化片结构,增大振荡频率会对含水合物沉积物的雾化排水产气以及潜在的泥砂解堵产生有利的效果。
参考文献(References)
Sloan E D. Fundamental principles and applications of natural gas hydrates[J]. Nature (London), 2003,426(6964):353-359. [百度学术]
Koh C A, Sloan E D, Sum A K, et al. Fundamentals and applications of gas hydrates[J]. Annu Rev Chem Biomol Eng, 2011, 2:237-257. [百度学术]
宁伏龙,窦晓峰,孙嘉鑫,等.水合物开采储层出砂数值模拟研究进展[J].石油科学通报,2020,5(2):182-203. [百度学术]
NING Fulong, DOU Xiaofeng, SUN Jiaxin, et al. Progress in numerical simulation of sand production from hydrate reservoirs[J]. Petroleum Science Bulletin, 2020,5(2):182-203. [百度学术]
Song Y, Yang L, Zhao J, et al. The status of natural gas hydrate research in china: A review[J]. Renewable and Sustainable Energy Reviews, 2014,31:778-791. [百度学术]
Li X-S, Xu C-G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: A review[J]. Applied Energy, 2016,172:286-322. [百度学术]
Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016,162:1633-1652. [百度学术]
Collett T, Bahk J-J, Baker R, et al. Methane hydrates in nature‑current knowledge and challenges[J]. Journal of Chemical & Engineering Data, 2014,60(2):319-329. [百度学术]
Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy Environ Sci, 2011,4(4):1206-1215. [百度学术]
李文龙,高德利,杨进,等.海域含天然气水合物地层钻完井面临的挑战及展望[J].石油钻采工艺,2019,41(6):681-689. [百度学术]
LI Wenlong, GAO Deli, YANG Jin, et al. Challenges and prospect of the drilling and completion technologies used for the natural gas hydrate reservoirs in sea areas[J]. Oil Drilling & Production Technology, 2019,41(6):681-689. [百度学术]
李彦龙.我国海域天然气水合物试开采圆满完成并取得历史性突破[J].海洋地质与第四纪地质,2017,37(5):34-34. [百度学术]
LI Yanlong. The trial exploitation of natural gas hydrate has been successfully completed and a historic breakthrough has been made[J]. Marine Geology & Quaternary Geology, 2017, 37(5):34-34. [百度学术]
叶建良,秦绪文,谢文卫,等.中国南海天然气水合物第二次试采主要进展[J].中国地质,2020,47(3):557-568. [百度学术]
YE Jianliang,QIN Xuwen,XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020,47(3):557-568. [百度学术]
李彦龙,刘昌岭,廖华林,等.泥质粉砂沉积物-天然气水合物混合体系的力学特性[J].天然气工业,2020,40(8):126-135. [百度学术]
LI Yanlong, LIU Changling, LIAO Hualin, et al. Mechanical properties of the mixed system of clayey‑silt sediments and natural gas hydrates[J]. Natural Gas Industry, 2020,40(8):126-135. [百度学术]
宁伏龙,方翔宇,李彦龙,等.天然气水合物开采储层出砂研究进展与思考[J].地质科技通报,2020,39(1):137-148. [百度学术]
NING Fulong, FANG Xiangyu, LI Yanlong, et al. Research status and perspective on wellbore sand production from hydrate reservoirs[J]. Bulletin of Geological Science and Technology, 2020,39(1):137-148. [百度学术]
Ning F, Yu Y, Kjelstrup S, et al. Mechanical properties of clathrate hydrates: Status and perspectives[J]. Energy & Environmental Science, 2012,5(5):6779-6795. [百度学术]
韦昌富,颜荣涛,田慧会,等.天然气水合物开采的土力学问题:现状与挑战[J].天然气工业,2020,40(8):116-132. [百度学术]
WEI Changfu, YAN Rongtao, TIAN Huihui, et al. Geotechnical problems in exploitation of natural gas hydrate: Status and challenges[J]. Natural Gas Industry, 2020,40(8):116-132. [百度学术]
窦晓峰,宁伏龙,李彦龙,等.基于连续-离散介质耦合的水合物储层出砂数值模拟[J].石油学报,2020,41(5):121-134. [百度学术]
DOU Xiaofeng, NING Fulong, LI Yanlong, et al. Continuum‑discrete coupling method for numerical simulation of sand production from hydrate reservoirs:A lab‑scale case study[J]. Acta Petrolei Sinica, 2020,41(5):121-134. [百度学术]
Li Y, Wu N, Ning F, et al. Hydrate‑induced clogging of sand‑control screen and its implication on hydrate production operation[J]. Energy, 2020,206:118030-118040. [百度学术]
董长银,钟奕昕,武延鑫,等.水合物储层高泥质细粉砂筛管挡砂机制及控砂可行性评价试验[J].中国石油大学学报(自然科学版),2018,42(6):84-92. [百度学术]
DONG Changyin, ZHONG Yixin, WU Yanxin, et al. Experimental study on sand retention mechanisms and feasibility evaluation of sand control for gas hydrate reservoirs with highly clayey fine sands[J]. Journal of China University of Petroleum ( dition of Natural Science) ,2018,42(6):79-87. [百度学术]
董长银,周玉刚,陈强,等.流体黏速物性对砾石层堵塞影响机制及充填防砂井工作制度优化实验[J].石油勘探与开发,2019,46(6):1178-1186. [百度学术]
DONG Changyin, ZHOU Yugang, CHEN Qiang, et al. Effects of fluid flow rate and viscosity on gravel‑pack plugging and the optimization of sand‑control wells production[J]. Petroleum Exploration and Development, 2019,46(6):1178-1186. [百度学术]
董长银,闫切海,李彦龙,等.天然气水合物储层颗粒级尺度微观出砂数值模拟[J].中国石油大学学报(自然科学版),2019,43(6):77-87. [百度学术]
DONG Changyin, YAN Qiehai, LI Yanlong, et al. Numerical simulation of sand production based on a grain scale microcosmic model for natural gas hydrate reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019,43(6):77-87. [百度学术]
Sloan E D. Introductory overview: Hydrate knowledge development[J]. American Mineralogist, 2004,89(8-9):1155-1161. [百度学术]
王韧,宁伏龙,刘天乐,等.游离甲烷气在井筒内形成水合物的动态模拟[J].石油学报,2017,38(8):963-972. [百度学术]
WANG Ren, NING Fulong, LIU Tianle, et al. Dynamic simulation of hydrate formed from free methane gas in borehole[J]. Acta Petrolei Sinica, 2017,38(8):963-972. [百度学术]
Wang R, Liu T, Ning F, et al. Effect of hydrophilic silica nanoparticles on hydrate formation: Insight from the experimental study[J]. Journal of Energy Chemistry, 2019,30:90-100. [百度学术]
Fang B, Ning F, Ou W, et al. The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study[J]. Fuel, 2019,258:116106.1-116106.9. [百度学术]