摘要
季冻区草炭土是沼泽环境中植物残体在氧化分解作用下,堆积形成的含有大量未分解纤维残体的特殊土。草炭土纤维及其含量对其强度和变形特性具有重要影响,目前考虑纤维含量对草炭土强度和变形特性影响的本构关系研究还相对匮乏。K-G本构模型因其模型参数与土的体积模量和剪切模量能建立直接联系,因此在岩土工程非线性理论和数值计算分析方面广泛应用。以不同纤维含量的草炭土为研究对象,进行三轴剪切试验,研究了草炭土的应力应变曲线,得到了草炭土非线性K-G模型参数,分析了各模型参数随纤维含量的变化规律,建立了模型参数与纤维含量之间的线性函数关系。对实际公路工程建设具有一定的指导意义。
草炭土是沼泽环境中植物残体在氧化分解作用下,堆积形成的含有大量未分解纤维残体、腐殖质和矿物质,且形成年代在1万年以内的特殊
非线性弹性K-G模型是基于广义Hooke定律建
(1) |
(2) |
通过等向固结排水三轴试验可以对Kt进行求
(3) |
(4) |
Domaschuk和Valliappa
通过等p三轴剪切试验对Gt进行求解,在试验得到q-εs曲线的基础上,将3Gt视为该曲线的斜率,表示为
(5) |
当Gt=0时土体破坏,摩尔-库仑极限平衡方程为q=n+mp。结合
(6) |
(7) |
(8) |
对
(9) |
或
(10) |
Domaschuk、Valliappa
季冻区草炭土试验土样取自吉林省敦化市江源镇南侧,鹤大公路草炭土工程试验段,起止里程K1+30-K2+520,实景照片如

图1 取样点
Fig.1 Sample location
依据标


图2 试验土样
Fig.2 Soil samples
(1)在等向固结排水试验中,进行平行测定,在11级围压(50、75、100、125、150、175、200、250、300、350、400 kPa)下排水固结,固结完成以排水量稳定为标准,待试样固结完成后再开始下一级加载。
(2)在等p三轴固结排水剪切试验中,分别在100、200、300、400 kPa围压下进行固结剪切。剪切过程中保持p值不变。剪切速率0.015 mm/min,当应变超过20%时,试验终止。
通过等向固结排水试验,得到不同纤维含量下草炭土的体积应变εv随平均正应力p和纤维含量ωf的变化关系曲线,如

图3 εv-p关系
Fig.3 Relationship of εv-p
通过等p三轴固结排水剪切试验,得到不同纤维含量季冻区草炭土的剪切应变εs与广义剪应力q的关系曲线,见

图4 εs-q曲线
Fig.4 Relationship of εs-q
对等向固结排水试验得到的εv-p曲线进行了p-εv曲线拟合,结果见
根据q-εs曲线,并结合摩尔-库仑破坏理论,q=n+mp的拟合结果见
根据上述分析可知:参数Ki和αk反映了平均正应力p对切线体积模量Kt的影响,随着纤维含量的增加草炭土的Kt逐渐减小,εv则不断变大,这说明随着纤维含量的增加,草炭土的抗压缩变形能力降低。纤维含量对参数m和βG影响较小,对参数n、Gi和αG影响较大。参数n、Gi和αG随纤维含量显著增大,因此,纤维含量的变化对草炭土的切线剪切模量影响显著。由于βG<0,根据
各模型参数随纤维含量ωf的变化规律曲线如

图5 非线性K-G模型参数与纤维含量关系曲线
Fig.5 Curve of the parameters of the nonlinear K-G model vs fiber content
(11) |
(1)通过等向固结排水试验和等p三轴固结排水剪切试验获得εv-p曲线和εs-q曲线,两者均为应变硬化型曲线,εv-p曲线符合幂函数曲线特征,εs-q曲线符合双曲线特征。在此基础上,确定了草炭土Naylor K-G模型7个参数值(Ki、αk、m、n、βG、Gi和αG),计算过程曲线拟合度较高,表明该Naylor K-G模型能较好地描述季冻区草炭土的非线性应力-应变关系。
(2)随着纤维含量的增加,草炭土切线体积模量Kt显著减小、切线剪切模量Gt显著增加,表明随着纤维含量的增加,季冻区草炭土的抗压缩变形能力降低,抗剪切能力增强。
(3)草炭土Naylor修正非线性弹性K-G模型的7个参数(Ki、αk、m、n、βG、Gi和αG)和纤维含量ωf之间呈现出较好的线性函数关系。
(4)在分析实际公路工程建设问题时,基于本文建立的季冻区草炭土非线性模型,只需在实际工程时用测得的季冻区草炭土的纤维含量就可以得到草炭土的模型参数,进而通过数值模拟分析计算不同纤维含量条件下季冻区草炭土的沉降变形,不仅可以保证工程的顺利进行,且模型形式简单、易于接受,对实际公路工程建设具有一定的指导意义。
参考文献(References)
佴磊,苏占东,徐丽娜,等.中国主要沼泽草炭土的形成环境及分布特征[J].吉林大学学报(地球科学版),2012,42(5):1477-1484. [百度学术]
NIE Lei, SU Zhandong, XU Lina, et al. Formation environment and distribution characteristics of main swamp turfy soil in China[J]. Journal of Jilin University (Earth Science Edition), 2012,42(5):1477-1484. [百度学术]
苏占东.吉林省东部地区沼泽草炭土的应力路径本构模型研究[D].长春:吉林大学,2015. [百度学术]
SU Zhandong. Study on the stress path constitutive model of swamp grass charcoal soil in eastern Jilin Province[D]. Changchun: Jilin University, 2015. [百度学术]
徐燕,胡天明,孙炜,等.季冻区草炭土直剪特性研究[J].人民长江,2019,50(9):209-213. [百度学术]
XU Yan, HU Tianming, SUN Wei, et al. Study on direct shear characteristics of turfy soil in seasonal frozen region[J]. Yangtze River, 2019,50(9):209-213. [百度学术]
吕岩,佴磊,徐燕,等.有机质对草炭土物理力学性质影响的机理分析[J].岩土工程学报,2011,33(4):655-660. [百度学术]
LÜ Yan, NIE Lei, XU Yan, et al. The mechanism of organic matter effect on physical and mechanical properties of turfy soil[J]. Chinese Journal of Geotechnical Engineering, 2011,33(4):655-660. [百度学术]
徐燕,佴磊,胡忠君.季冻区草炭土工程地质特性研究[J].人民长江,2011,42(10):17-20. [百度学术]
XU Yan, NIE Lei, HU Zhongjun. Study on engineering geological characteristics of turfy soil in seasonal frozen region[J]. Yangtze River, 2011,42(10):17-20. [百度学术]
徐燕.季冻区草炭土工程地质特性及变形沉降研究[D].长春:吉林大学,2008. [百度学术]
XU Yan. Research on engineering geological characteristics and deformation and settlement of grass charcoal soil in seasonal frozen area[D]. Chanchun: Jilin University, 2008. [百度学术]
赵华,佴磊,梁兵.吉林敦化地区草炭土的工程性质[J].岩土工程技术,2004,18(6):311-314. [百度学术]
ZHAO Hua, NIE Lei, LIANG Bing. Geotechnical character of turfy soil in Dunhua area, Jilin Province[J]. Geotechnical Engineering Technique, 2004,18(6):311-314. [百度学术]
金健康,佴磊.鹤大公路草炭土工程地质特性研究[J].城市道桥与防洪,2004(6):113-115,7. [百度学术]
JIN Jiankang, NIE Lei. Study on eological characteristics of grass⁃charcoal earth project of Heda Highway[J]. Urban Roads and Bridges and Flood Control, 2004(6):113-115,7. [百度学术]
韩玉民.草炭土地基冻胀特性试验研究[J].森林工程,2009,25(1):55-58. [百度学术]
HAN Yumin. Study on turfy soil foundation frost heave characteristics[J]. Forest Engineering, 2009,25(1):55-58. [百度学术]
刘柱,佴磊.吉林地区草炭土物理力学指标相关性试验研究[J].水文地质工程地质,2010,37(4):53-57. [百度学术]
LIU Zhu, NIE Lei. Experimental research on the correlation of physico mechanics indexes of the turfy soil in the Jilin Area[J]. Hydrogeology and Engineering Geology, 2010,37(4):53-57. [百度学术]
黄文熙.土的工程性质[M].北京:水利电力出版社,1983. [百度学术]
HUANG Wenxi. Engineering properties of soil[M]. Beijing: Hydraulic and Electric Power Press, 1983. [百度学术]
胡再强,马素青,李宏儒.非饱和黄土非线性K-G模型试验研究[J].岩土力学,2012,33(S1):56-60. [百度学术]
HU Zaiqiang, MA Suqing, LI Hongru. Research on non⁃linear K-G model test of unsaturated loess[J]. Rock and Soil Mechanics, 2012,33(S1):56-60. [百度学术]
文畅平.基于扰动状态理论的生物酶改良膨胀土K-G模型[J].中国公路学报,2018,31(2):308-318. [百度学术]
WEN Changping. K-G model of bioenzyme⁃treated expansive soil based on disturbed state theory[J]. China Journal of Highway Transport, 2018,31(2):308-318. [百度学术]
Domaschuk L, Valliappan P. Nonlinear settlement analysis by finite element[J]. ASCE J Geotech Eng Div, 1975, 101(7):601-614. [百度学术]
曾以宁,屈智炯,刘凯明.土的非线性K-G模型的试验研究[J].成都科技大学学报,1985(4):143-149. [百度学术]
ZENG Yining, QU Zhijiong, LIU Kaiming. Experimental study on nonlinear K-G model of soil[J]. Journal of Chengdu University of Science and Technology, 1985(4):143-149. [百度学术]
夏洪.普遍应力状态下的内勒弹性非线性K-G模型[J].岩土工程学报,1985(2):92-101. [百度学术]
XIA Hong. Neeller elastic nonlinear K-G model under universal stress[J]. Chinese Journal of Geotechnical Engineering, 1985(2):92-101. [百度学术]
Naylor D J. Stress-strain laws for soils[C]//Developments in Soil Mechanics. Essex: Applied Science Publishers Ltd, 1978:39-68. [百度学术]
高莲士,汪召华,宋文晶.非线性解耦K-G模型在高面板堆石坝应力变形分析中的应用[J].水利学报,2001(10):1-7. [百度学术]
GAO Lianshi, WANG Zhaohua, SONG Wenjing. The application of nonlinear uncoupled K-G model to deformation analysis of high concrete rockfill dam[J]. Journal of Hydraulic Engineering, 2001(10):1-7. [百度学术]
刘斯宏,姚仰平,孙德安,等.剪胀K-G模型及其有限元数值分析[J].土木工程学报,2004,37(9):69-74. [百度学术]
LIU Sihong, YAO Yangping, SUN Dean, et al. Nonlinear elastic K-G soil model dilatancy and its fem application[J]. China Civil Engineering Journal, 2004,37(9):69-74. [百度学术]
Izumi H K, Kamemura K, Sato S. Finite element analysis of stresses and movements in excavations[C]//Proceedings of the 2nd International Conference on Numerical Methods in Geomechanics. Virginia, USA, 1976:701-712. [百度学术]
Byrne P M, Eldridge T L. Three⁃parameter dilatant elastic stress-strain model for sand[C]//Proceedings of International Symposium on Numerical Models in Geomechanics. Zurich, Switzerland, 1982:73-80. [百度学术]
殷建华.土的三模量增量非线性模型及其推广[J].岩土力学,2000,21(1):16-19,53. [百度学术]
YIN Jianhua. Three‑modulu incremental non‑linear models of soil and generalization[J]. Rock and Soil Mechanics, 2000,21(1):16-19,53. [百度学术]
沈珠江.理论土力学[M].北京:中国水利水电出版社,2000. [百度学术]
SHEN Zhujiang. Theoretical soil mechanics[M]. Beijing: China Water Conservancy and Hydropower Press, 2000. [百度学术]
孙陶,高希章.考虑土体剪胀性和应变软化性的K-G模型[J].岩土力学,2005,26(9):1369-1373. [百度学术]
SUN Tao, GAO Xizhang. Containing dilatancy and strain softening of earth’s K-G model[J]. Rock and Soil Mechanics, 2005,26(9):1369-1373. [百度学术]
周葆春,汪墨,李全华,等.黏性土非线性弹性K-G模型的一种改进方法[J].岩土力学,2008,29(10):2725-2730. [百度学术]
ZHOU Baochun, WANG Mo, LI Quanhua, et al. A modified method of nonlinear elastic K-G model for clay soil[J]. Rock and Soil Mechanics, 2008,29(10):2725-2730. [百度学术]
张玉云,张建海,何昌荣.本构模型对高心墙堆石坝变位和应力计算的影响[J].人民长江,2013,44(19):69-72. [百度学术]
ZHANG Yuyun, ZHANG Jianhai, HE Changrong. Influence of different constitutive models on displacement and stress of high core⁃wall rock⁃fill dam[J]. Yangtze River, 2013,44(19):69-72. [百度学术]
吴小锋,李光范,胡伟,等.基于综合结构势概念的海口原状红黏土K-G模型修正[J].工程地质学报,2013,21(6):973-980. [百度学术]
WU Xiaofeng, LI Guangfan, HU Wei, et al. Modification of K-G model of based on comprehensive structure potential for natural red soil in Haikou[J]. Journal of Engineering Geology, 2013,21(6):973-980. [百度学术]
李广信,林鸿州.高等土力学教程[M].武汉: 武汉理工大学出版社,2017. [百度学术]
LI Guangxin, LIN Hongzhou. Advanced soil mechanics course[M]. Wuhan: Wuhan University of Technology Press, 2017. [百度学术]
谢定义,姚仰平,党发宁.高等土力学[M].北京: 高等教育出版社,2008. [百度学术]
XIE Dingyi, YAO Yangping, DANG Faning. Advanced soil mechanics[M]. Beijing: Higher Education Press, 2008. [百度学术]
屈智炯,刘恩龙.土的塑性力学[M].北京: 科学出版社,2011. [百度学术]
QU Zhijiong, LIU Enlong. Plastic mechanics of soil[M]. Beijing: Science Press, 2011. [百度学术]
Kondner R L. Hyperbolic stress-strain response: cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1964, 82(S1):115-143. [百度学术]
ASTM D 1997—13, Standard test method for laboratory determination of the fiber content of peat samples by dry mass[S]. West Conshohocken. PA, USA: American Society for Testing and Materials, 2013. [百度学术]
ASTM D 2974—14, Standard test methods for moisture, ash, and organic matter of peat and other organic soils[S]. West Conshohocken. PA, USA: American Society for Testing and Materials, 2014. [百度学术]