4/14/2025, 12:36:24 AM 星期一
Research Progress on Supercritical Carbon Dioxide Fracturing Technology
CSTR:
Author:
Affiliation:

College of Construction Engineering, Jilin University,College of Construction Engineering, Jilin University,College of Construction Engineering, Jilin University,College of Construction Engineering, Jilin University,College of Construction Engineering, Jilin University

Clc Number:

TE132.8

  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    For the exploitation of low-permeability oil shale deposits, supercritical carbon dioxide (SC-CO2) fracturing technology avoids the formation damage, possible induced earthquakes and environmental pollution caused by hydraulic fracturing effectively and becomes a hot waterless fracturing technology because of its advantages of reducing initiation pressure, communicating micro cracks and developing complex fracture network. This paper introduced in detail the technical characteristics and the experimental and mathematical model studies of SC—CO2 fracturing in recent years. From the view of experimental studies about crack propagation mechanism, experimental studies about lithologic change with the interaction of SC—CO2, the development of SC—CO2 fracturing fluid and mathematical model studies about the flowing rules of sand carrying SC—CO2, temperature of wellbore, crack initiation and propagation mechanism, the research progress and deficiency of SC—CO2 fracturing technology were discussed and suggestions were put forward about the design of tackifier, effective evaluation of fracture and enhancement of oil shale reservoir heat transfer and seepage capacity caused by packed fracture, providing a reference for its development.

    Reference
    [1] 胡文瑞. 中国低渗透油气的现状与未来[J]. 中国工程科学, 2009, 11(8): 29-37.
    [2] 刘招君, 董清水, 叶松青, 朱建伟, 郭巍, 李殿超, 柳蓉, 张海龙, 杜江峰. 中国油页岩资源现状[J]. 吉林大学学报(地球科学版), 2006, 36(6): 869-876.
    [3] 高帅. 油页岩水平井水力压裂裂缝起裂与延伸机理研究[D]. 吉林大学, 2017.
    [4] 孙鑫, 杜明勇, 韩彬彬, 孙永鹏, 赵明伟, 管保山, 戴彩丽. 二氧化碳压裂技术研究综述[J]. 油田化学, 2017, 34(2): 374-380.
    [5] 毛金成, 张照阳, 赵家辉,等. 无水压裂液技术研究进展及前景展望[J]. 中国科学:物理学 力学 天文学, 2017(11).
    [6] 刘合, 王峰, 张劲,等. 二氧化碳干法压裂技术——应用现状与发展趋势[J]. 石油勘探与开发, 2014, 41(4):466-472.
    [7] 张怀文, 周江, 高燕. 二氧化碳干法压裂技术综述[J]. 新疆石油科技, 2018, 1(28): 30-34.
    [8] Kumar, S.K., Johnston, K.P. Modelling the solubility of solids in supercritical fluids with density as the independent variable[J]. Journal of Supercritical Fluids, 2015, 1(1):15-22.
    [9] Fang, C., Chen, W., Amro, M., et al. Simulation Study of Hydraulic Fracturing Using Super Critical CO2 in Shale[R]. SPE172110, 2014.
    [10] 彭英利, 马承愚. 超临界CO2流体技术应用手册[M]. 北京:化学工业出版社, 2005, 1-40.
    [11] 王海柱, 沈忠厚, 李根生. 超临界CO_2开发页岩气技术[J]. 石油钻探技术, 2011, 39(3): 30-35.
    [12] 张树立. CO2无水压裂工艺及核心设备综述[J]. 石油机械, 2016, 44(8): 79-84.
    [13] 赵志恒. 超临界二氧化碳无水压裂新技术实验研究展望[J]. 天然气勘探与开发, 2016, 39(2): 58-63.
    [14] H. Wang. A Feasibility Analysis on Shale Gas Exploitation with Supercritical Carbon Dioxide[ J] . Energy Sources, 2012 , 34 ( 15 ) : 1426 - 1435 .
    [15] Gupta A P, Gupta A, Langlinais J. Feasibility of Supercritical Carbon Dioxide as a Drilling Fluid for Deep Underbalanced Drilling Operation[M]. Society of Petroleum Engineers, 2005.
    [16] Verdon, J.P., Kendall, J.M. and Maxwell, S.C. A comparison of passive seismic monitoring of fracture stimulation from water and C O2 injection[J]. Geophysics, 2010, 75(3):MA1-MA7.
    [17] Ishida, T., Aoyagi, K., Niwa, T., et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters, 2012, 39(16):16309.
    [18] Richard S. Middleton.Shale gas and non- aqueous fracturing fluids: Opportunities and challenges for supercritical CO 2 [ J] . Applied Energy, 2015 , 147 ( 3 ) : 500 - 509 .
    [19] Zhang, X., Lu, Y., Tang, J., et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2016, 190.
    [20] Zhao, Z., Li, X., He, J., et al. A laboratory investigation of fracture propagation induced by supercritical carbon dioxide fracturing in continental shale with interbeds[J]. Journal of Petroleum Science & Engineering, 2018.
    [21] Shiraki, R., Dunn, T. L. Experimental study on water–rock interactions during CO 2, flooding in the Tensleep Formation, Wyoming, USA[J]. Applied Geochemistry, 1996, 12(1):233-237.
    [22] Kaszuba, J. P., Janecky, D. R., Snow, M. G. Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository[J]. Chemical Geology, 2005, 217(3–4):277-293.
    [23] Andreas Busch. Carbon dioxide storage potential of shales[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 297-308.
    [24] Richard Lahann. Influence of CO 2 on New Albany Shale composition and pore structure[J]. International Journal of Coal Geology, 2013, 108(12): 2-9.
    [25] 陈钰婷. 超临界二氧化碳作用下页岩力学特性研究[D]. 重庆大学, 2016.
    [26] Ao, X., Lu, Y., Tang, J., et al. Investigation on the physics structure and chemical properties of the shale treated by supercritical CO 2[J]. Journal of Co2 Utilization, 2017, 20:274-281.
    [27] Dai, C., Wang, T., Zhao, M., et al. Impairment mechanism of thickened supercritical carbon dioxide fracturing fluid in tight sandstone gas reservoirs[J]. Fuel, 2018, 211:60-66.
    [28] 范志, 孙宝江, 孙文超, 张洪坤, 郭艳利. 超临界二氧化碳压裂液增黏实验方法浅析[C]// 全国水动力学研讨会. 2014.
    [29] 刘真光, 邱正松, 钟汉毅,等. 页岩储层超临界CO2压裂液滤失规律实验研究[J]. 钻井液与完井液, 2016, 33(1):113-117.
    [30] Du, M., Sun, X., Dai, C., et al. Laboratory experiment on a toluene-polydimethyl silicone thickened supercritical carbon dioxide fracturing fluid[J]. Journal of Petroleum Science & Engineering, 2018, 166.
    [31] 郭建春, 曾冀. 超临界二氧化碳压裂井筒非稳态温度-压力耦合模型[J]. 石油学报, 2015, 36(2):203-209.
    [32] 孙小辉, 孙宝江, 王志远. 超临界CO2压裂裂缝温度场模型[J]. 石油学报, 2015, 36(12):1586-1592.
    [33] 王金堂, 孙宝江, 刘云, 王志远. 裂缝内超临界二氧化碳携带支撑剂两相流动数值模拟研究[C]// 全国水动力学研讨会. 2015.
    [34] 侯磊. 支撑剂在超临界二氧化碳中的跟随性计算[J]. 石油学报, 2016, 37(8):1061-1068.
    [35] 方长亮, 蒋国盛, M.Amro. 超临界二氧化碳压裂页岩的可压裂性模拟研究[C]// 全国探矿工程. 2015.
    [36] 陈立强, 田守嶒, 李根生,等. 超临界CO2压裂起裂压力模型与参数敏感性研究[C]// 全国桩基工程学术会议. 2015.
    [37] 孙文超, 孙宝江. 分子模拟在超临界CO_2增粘剂分子设计中的应用[C]// 中国化学会全国量子化学会议. 2014.
    [38] 李鹏. 单裂缝中携砂液流动规律研究[J]. 力学与实践, 2017, 39(2): 135-144.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:895
  • PDF: 1131
  • HTML: 0
  • Cited by: 0
History
  • Received:July 31,2018
  • Revised:July 31,2018
  • Adopted:August 31,2018
  • Online: October 17,2018
Article QR Code