4/7/2025, 4:56:16 AM 星期一
Research on Hydraulic Fracturing in Deep Ice Core Drilling Borehole Wall
CSTR:
Author:
Affiliation:

College of Construction Engineering, Jilin University,College of Construction Engineering, Jilin University,College of Construction Engineering, Jilin University,The Company of Drilling Tubes DdDdTools Service, Zhongyuan Petroleum Engineering Co., Ltd., Sinopec,College of Construction Engineering, Jilin University,College of Construction Engineering, Jilin University,Chinese Gezhouba Group Three Gorges Construction Engineering Co., Ltd.

Clc Number:

P634

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to maintain the stability of deep ice core drilling borehole wall and avoid the occurrence of in-hole accidents, the hydraulic fracture become one of the important scientific problem which need to be solved urgently. On the basis of deep analysis of the ice drilling data, and combining the ice sheet dynamics related theory, we calculated the change rules of ice density, temperature and internal stress with depth. Then, combining the hydraulic fracturing technology in oil and gas resources exploration drilling and ice drilling fluid theory, we established a reasonable differential pressure calculation method of ice borehole wall and discusses the mechanism of hydraulic fracturing for deep ice drilling deeply. By developing a true-triaxial hydraulic fracturing equipment, we obtained the brittle deformation mechanism of ice borehole under different confining pressures. Combining the actual deep ice core drilling in Dome A, we obtained the depth interval and necessary initial fracture length of occurring potential hydraulic fracture in this borehole. This method provides an important theoretical basis for subsequent safe and efficient in future ice drilling engineering.

    Reference
    [1] Fjær, E., Holt, R.M., Horsrud, P., Raaen, A.M. and Risnes, R. Mechanics of hydraulic fracturing[M]. Elsevier Science & Technology,2008: 369-390.
    [2] Colgan, W., Steffen, K., Mclamb, W.S., Abdalati, W., Rajaram, H., Motyka, R., Phillips, T. and Anderson, R. An increase in crevasse extent, West Greenland: Hydrologic implications[J]. Geophysical Research Letters, 2011, 38(18): 113-120.
    [3] Colgan, W., Rajaram, H., Abdalati, W., Mccutchan, C., Mottram, R., Moussavi, M.S. and Grigsby, S. Glacier crevasses: Observations, models, and mass balance implications[J]. Reviews of Geophysics, 2016, 54(1): 119-161.
    [4] Duddu, R., Bassis, J.N. and Waisman, H. A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics. Geophysical Research Letters, 2013, 40(12): 3064-3068.
    [5] 黄荣樽. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发, 1981, (05): 62-74.
    [6] 陈勉, 陈治喜, 黄荣樽. 大斜度井水压裂缝起裂研究[J]. 中国石油大学学报自然科学版, 1995, (2): 30-35.
    [7] 金衍, 张旭东, 陈勉. 天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J]. 石油学报, 2005, 26(6): 113-114.
    [8] 李兆敏, 蔡文斌, 张琪, 曲占庆. 水平井压裂裂缝起裂及裂缝延伸规律研究[J]. 西安石油大学学报(自然科学版), 2008, (05): 46-48.
    [9] Talalay, P., Fan, X., Xu, H., Yu, D., Han, L., Han, J. and Sun, Y. Drilling fluid technology in ice sheets: Hydrostatic pressure and borehole closure considerations. Cold Regions Science & Technology, 2014, 98(3): 47-54.
    [10] Gundestrup, N.S. and Hansen, B.L. Bore-Hole Survey at Dye 3, South Greenland. Journal of 324 Glaciology, 1984, 30(106): 282-288.
    [11] Hansen, B.L. and Gundestrup, N.S. Resurvey of bore hole at Dye 3, South Greenland. Journal of Glaciology, 1988, 34(117): 178-182.
    [12] Kudryashov, B.B., Vasiliev, N.I., Vostretsov, R.N., Dmitriev, A.N., Zubkov, V.M., Krasilev, A.V., Talalay, P.G., Barkov, N.I., Lipenkov, V.Y. and Petit, J.R. Deep ice coring at Vostok Station (East Antarctica) by an electromechanical drill. Memoirs of National Institute of Polar Research Special Issue, 2002, 56: 91-102.
    [13] Vasilev, N.I., Dmitriev, A.N., Podoliak, A.V., Lukin, V.V., Turkeev., A.V. Maintaining differential pressure in boleholes drilled in ice and the effect of ice hydrofracturing. International Journal of Applied Engineering Research, 2016, 11: 9740-9747.
    [14] Budd, W. F., Jensen, D. and Radok, U. Derived physical characteristics of the Antarctic Ice Sheet. Australian National Antarctic Expeditions Interim Reports, Series A (IV) Glaciology, 1971, Publication No. 120.
    [15] SCHYTT, V. Snow studies at Maudheim. Nor. Brit. Swed. Antarct. Exped. 690 1949-52, Sci. Res., 4 A, 1958.
    [16] Hooke, R.L., Mellor, M., Budd, W.F., Glen, J.W., Higashi, A., Jacka, T.H., Jones, S.J., Lile, R.C., Martin, R.T. and Meier, M.F. Mechanical properties of polycrystalline ice: An assessment of current knowledge and priorities for research: Report prepared for the International Commission on Snow and Ice, with support from the U.S. National Science Foundation. Cold Regions Science & Technology, 1980, 3(4): 263-275.
    [17] 王维. 油页岩水力压裂数值模拟及实验研究[D]. 长春:吉林大学,2014.
    [18] 高帅, 陈晨, 王维, 郭威, 李强, 王聪, 洪健俊. 桦甸地区油页岩水力压裂模拟实验研究[C]. 第十八届全国探矿工程(岩土钻掘工程)学术交流年会, 中国黑龙江哈尔滨, 2015: 572-578.
    [19] 高帅. 油页岩水平井水力压裂裂缝起裂与延伸机理研究[D]. 长春:吉林大学,2017.
    [20] 洪建俊. 冰层钻探孔壁水力压裂数值模拟与实验研究[D]. 长春:吉林大学,2016.
    [21] 张洪彪. 黄河冰抗拉强度及断裂韧性的劈裂试验研究[D]. 大连:大连理工大学,2016.
    [22] Veen, C.J.V.D. Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Regions Science & Technology, 1998, 27(1): 31-47.
    [23] Zhang, N., An, C., Fan, X., Shi, G., Li, C., Liu, J., Hu, Z., Talalay, P., Sun, Y. and Li, Y. Chinese First Deep Ice-Core Drilling Project DK-1 at Dome A, Antarctica (2011-2013): progress and performance. Annals of Glaciology, 2014, 55(68): 88-98.
    [24] Wang, Y., Sodemann, H., Hou, S., Massondelmotte, V., Jouzel, J. and Pang, H. Snow accumulation and its moisture origin over Dome Argus, Antarctica. Climate Dynamics, 2013, 40(3-4): 731-742.
    [25] Wang, B., Tian, G., Cui, X. and Zhang, X. The internal COF features in Dome A of Antarctica revealed by multi-polarization-plane RES. Applied Geophysics, 2008, 5(3): 230-237.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:798
  • PDF: 1022
  • HTML: 0
  • Cited by: 0
History
  • Received:July 05,2018
  • Revised:July 05,2018
  • Adopted:August 25,2018
  • Online: November 19,2018
Article QR Code