4/6/2025, 12:52:35 PM 星期日
Cementing quality evaluation method research by image recognition technology
Author:
Affiliation:

Kunlun Digital Technology Limited Liability Company, Beijing 102206, China

Clc Number:

TE256;P634

  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [12]
  • | | |
  • Comments
    Abstract:

    There are many researches on cementing implementation methods and engineering detection methods of cementing quality, but the analysis of picture results on cementing quality is relatively rare. In this paper, a text coordinate position reference algorithm for focusing image analysis range and an image analysis algorithm based on histogram similarity and gradient distance are proposed to evaluate cement quality using evaluation image. A combination of image analysis algorithm and business mechanism is used to extract quantitative data from the evaluation image to evaluate cementing quality. Through comparison of model experiments, the proposed image analysis algorithm can accurately identify the cement quality information in the picture, and the error rate between the analytic results and the actual results is less than 10%. The method proposed in this paper can effectively solve the shortcomings of low efficiency and large error of manual analysis, and provides a practical solution to the situation that electronic data of cementing quality is missing and only the cementing quality evaluation image is kept. The proposed algorithm has strong exploratory significance for deep mining of cementing quality pictures.

    Reference
    [1] 吴天乾,宋文宇,谭凌方,等.超低密度水泥固井质量评价方法[J].石油钻探技术,2022,50(1):65-70.
    [2] 郭洪志,雷达.双管柱封隔固井质量评价技术方法及应用[J].世界石油工业,2022,29(3):54-60.
    [3] 潜晓晨.固井质量评价测井影响因素分析[J].西部探矿工程,2023,35(11):92-94.
    [4] 吴华,刘连恺,王磊,等.GY5-1-4H页岩油水平井提高固井质量关键技术研究与实践[J].钻探工程,2023,50(4):135-141.
    [5] 郤一臻,赵福金,荆京,等.山西干热岩GR1井高温固井技术研究与实践[J].钻探工程,2022,49(6):42-47.
    [6] 王明辉,李进,韩耀图,等.基于超声Lamb波的固井质量评价新技术与应用[J].钻井液与完井液,2023,40(4):519-526.
    [7] 陈向军,李维彦,杨顺辉,固井质量评价面临的新问题及思路.测井技术,2015,39(1):1-5.
    [8] 肖红, 钱祎鸣.基于改进DenseNet的固井质量评价新方法[J].计算机技术与发展,2024,34(1):193-199.
    [9] Jing Cheng L , Hong Tu W , Shun Peng Z ,et al. Intelligent Evaluation Model for Cementing Quality Based on PSO-SVM and Application[C]//International Conference on Green Building, Materials and Civil Engineering, 2011.
    [10] 郑双进,程霖,龙震宇,等.基于GA-SVR算法的顺北区块固井质量预测[J].石油钻采工艺,2021,43(4):467-473.
    [11] 李忠庆,李传武,朱达江.利用环空压力测试数据评价高温高压气井固井水泥环的密封完整性[J].钻探工程,2021,48(6):15-21.
    [12] 芦琦,刘洋,秦辉等.基于OCR的标书文件信息获取技术应用研究[J].信息与电脑(理论版),2023,35(9):166-169.
    [13] 曹菁,陈康,齐宁等.基于OCR和图像检测的盖章文书图像自动审核方法[J].应用科学学报,2023,41(6):1058-1067.
    [14] 钟琳.基于RPA+OCR技术的海上油田生产过程监测研究[J].中国高新科技,2023(18):33-35.
    [15] 杨玉卿,崔维平,张翔.基于电成像测井图像识别求取地层产状的新方法[J1.石油物探,2017,56(2):302-308
    [16] 彭越,张满郎,李明秋,等,基于图像识别技术的裂缝发育程度定量评价新方法——以安岳气田须二气藏为例[J].非常规油气,2024,11(1):12-21.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:35
  • PDF: 558
  • HTML: 17
  • Cited by: 0
History
  • Received:March 22,2024
  • Revised:June 06,2024
  • Adopted:June 11,2024
  • Online: November 08,2024
Article QR Code