Research on the correction and anti-inclination capability of single bend double stable screw drilling tool combination
CSTR:
Author:
Affiliation:

The First Exploration Team of Shandong Coalfield Geolgic Bureau, Qingdao Shandong 266400, China

Clc Number:

P634.7

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the deepening of exploration and development of deep geological resources in China, deep mineral deposits have become the focus of geological prospecting work. In the process of deep prospecting and drilling, the problem of maintaining the straightness of the vertical well section in the high steep structure has been a major problem for drilling technicians, which seriously affects the exploration efficiency of deep mineral deposits. In the inclined section, the single bend bistable screw drill is the most commonly used anti-deviation and correction drill assembly. In this paper, a mechanical model of BHA is established based on the crossbar bending beam method and the principle of equilibrium trend. The influence law of each factor on the deviation correction ability is analyzed through the model, and the main control factor is determined by the orthogonal test design method. Finally, based on the theory of multi-objective optimization, a multi-objective optimization method for control parameters of fast drilling is established to obtain the optimal parameter combination. Based on the above research, a set of anti-skew and straightening optimization design method is developed to improve the drilling efficiency of the vertical well section of the high steep structure, and promote the efficient and low-cost drilling and development of deep mineral deposits.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 22,2023
  • Revised:June 21,2024
  • Adopted:July 04,2024
  • Online: October 08,2024
  • Published:
Article QR Code