4/7/2025, 3:55:56 AM 星期一
Numerical simulation and parameter optimization of hydraulic fracturing for hot dry rock reservoirs based on cohesive zone method
CSTR:
Author:
Affiliation:

1.College of Exploration and Mapping Engineering, Changchun Institute of Technology, Changchun Jilin 130021, China;2.College of Management, Changchun Institute of Technology, Changchun Jilin 130021, China;3.College of Geology and Environment, Xi’an University of Science and Technology, Xi’an Shaanxi 710054, China

Clc Number:

P634;TE37

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Hydraulic fracturing technology plays a key role in the efficiency exploitation of low-permeability oil-gas and geothermal reservoirs. In order to study the extension pattern of hydraulic fractures within the hot dry rock, the effect of flow rate and viscosity of fracturing fluid and horizontal geo-stress difference on the morphology of hydraulic fractures were investigated by the cohesive zone method (CZM), and the combination of the above fracturing process parameters was optimized using orthogonal tests. The results show that the flow rate of fracturing fluid has a significant effect on the length of the hydraulic fracture, whereas the viscosity of the fracturing fluid has a significant effect on the width of the hydraulic fracture. The increase in the flow rate and viscosity of the fracturing fluid promotes the emergence and extension of branching fractures. When the horizontal geo-stress difference is 1MPa, the model established in this paper can obtain the best fracturing modification effect under the conditions that the fracturing fluid flow rate is 0.004m3/s and the viscosity is 0.07Pa·s; As the flow rate and viscosity of fracturing fluid exceed 0.004m3/s and 0.07Pa·s respectively and continuously increase, a decrease in the length and width of the hydraulic fracture will occur. Therefore, it is considered that the continuous improvement of fracturing effect cannot be achieved blindly by increasing the flow rate and viscosity of the fracturing fluid during the actual fracturing process. The findings of this study are expected to provide significant support in predicting the fracture extension behavior and the optimizing the fracturing parameters during the exploitation of hot dry rock geothermal resources.

    Reference
    [1] 邹才能,陶士振,白斌,等.论非常规油气与常规油气的区别和联系[J].中国石油勘探,2015,20(1):1-16.ZOU Caineng, TAO Shizhen, BAI Bin, et al. Differences and relations between unconventional and conventional oil and gas[J]. China Petroleum Exploration, 2015,20(1):1-16.
    [2] 贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. China Petroleum Exploration and Development, 2012,39(2):129-136.
    [3] 黄维和,韩景宽,王玉生,等.我国能源安全战略与对策探讨[J].中国工程科学,2021,23(1):112-117.HUANG Weihe, HAN Jingkuan, WANG Yusheng, et al. Strategies and countermeasures for ensuringenergy security in China[J]. Strategic Study of CAE, 2021,23(1):112-117.
    [4] 李德威,王焰新.干热岩地热能研究与开发的若干重大问题[J].地球科学(中国地质大学学报),2015,40(11):1858-1869.LI Dewei, WANG Yanxin. Major issues of research and development of hot dry rock geothermal energy[J]. Earth Science: Journal of China University of Geoscience, 2015,40(11):1858-1869.
    [5] 王贵玲,杨轩,马凌,等.地热能供热技术的应用现状及发展趋势[J].华电技术,2021,43(11):15-24.WANG Guiling, YANG Xuan, MA Ling, et al. Status quo and prospects of geothermal energy in heat supply[J]. Huadian Technology, 2021,43(11):15-24.
    [6] 王文,吴纪修,施山山等.探秘“能源新星”——干热岩[J].探矿工程(岩土钻掘工程),2020,47(3):88-93.WANG Wen, WU Jixiu, SHI Shanshan, et al. Probe a new energy: Hot dry rock[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(3):88-93.
    [7] 庞忠和,罗霁,程远志,等.中国深层地热能开采的地质条件评价[J].地学前缘,2020,27(1):134.PANG Zhonghe, LUO Ji, CHENG Yuanzhi, et al. Evaluation of geological conditions for development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020,27(1):134.
    [8] 王贵玲,张薇,梁继运,等.中国地热资源潜力评价[J].地球学报,2017,38(4):448-459.WANG Guiling, ZHANG Wei, LIANG Jiyun, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017,38(4):448-459.
    [9] 王跃伟,李宽,张恒春,等.液动潜孔锤用于干热岩钻进的优化与试验[J].钻探工程,2022,49(6):36-41.WANG Yuewei, LI Kuan, ZHANG Hengchun, et al. Optimization and test of hydraulic DTH hammers used in hot dry rock drilling[J]. Drilling Engineering, 2022,49(6):36-41..
    [10] 许天福,张延军,曾昭发,等.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45.XU Tianfu, ZHANG Yanjun, ZENG Zhaofa, et al. Technological advances in enhanced geothermal systems (hot dry rock) development[J]. Science & Technology Review, 2012,30(32):42-45.
    [11] 郭亮亮,张延军,胡忠君,等.增强型地热系统水力压裂和开采方案研究[J].工程地质学报.2015,23(s1):235-241.GUO Liangliang, ZHANG Yanjun, HU Zhongjun, et al. Study of hydraulic fracturing and extraction programmes in enhanced geothermal systems[J]. 2015,23(s1):235-241.
    [12] Chen H.Y, Teufel L.W, Lee,R. Coupled fluid flow and geomechanics in reservoir study[C]. Proceedings of the 1995 SPE Annual Technical Conference and ExhibitionDallas, TX, USA,1995.
    [13] 何艳青,王鸿勋.用数值模拟方法预测压裂井的生产动态[J].石油大学学报(自然科学版),1990(5):16-25.HE Yanqing, WANG Hongxun. Predicting production dynamics in fractured wells using numerical simulation methods[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1990(5):16-25.
    [14] 闫建文,王群嶷,张士诚.低渗透油田压裂注水采油整体优化方法[J].大庆石油地质与开发,2000(5):50-52,69-70.YAN Jianwen, WANG qunyi, ZHANG Shicheng. An overall optimisation method for fracturing water injection and oil recovery in low permeability oilfields[J]. Petroleum Geology & Oilfield Development in Daqing, 2000(5):50-52,69-70.
    [15] 谭现锋,刘肖,马哲民,等.干热岩储层裂隙准确识别关键技术探讨[J].钻探工程,2023,50(2):48-57.TAN Xianfeng, LIU Xiao, MA Zhemin, et al. Discussion on the key technology for fracture identification in hot dry rock reservoir[J]. Drilling Engineering, 2023,50(2):48-57.
    [16] 蒋亚峰,田英英,李小洋,等.基于cohesive单元海域天然气水合物储层水力压裂模拟[J].钻探工程,2023,50(1):18-25.JIANG Yafeng, TIAN Yingying, LI Xiaoyang, et al. Numerical simulation of hydrate reservoir hydraulic fracturing based on cohesive units[J]. Drilling Engineering, 2023,50(1):18-25.
    [17] ChuprakoV D.A., Akulich A.V., Siebrits E, et al. Hydraulic-fracture propagation in a naturally fractured reservoir[J]. SPE Production & Operations, 2011,26:88-97.
    [18] Zhao J, Chen X, Li Y, et al. Simulation of simultaneous propagation of multiple hydraulic fractures in horizontal wells[J]. Journal of Petroleum Science and Engineering, 2016,147:788-800.
    [19] Abuaisha Murad S., Eaton David, Priest Jeffrey,et al. Hydro-mechanically coupled FDEM framework to investigate near-wellbore hydraulic fracturing in homogeneous and fractured rock formations[J]. Journal of Petroleum Science & Engineering, 2017,154:100-113.
    [20] Lanru, Jing, Yue Ma, et al. Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method[J]. International Journal of Rock Mechanics & Mining Sciences, 2001,38:343-355.
    [21] Wang X L, Shi F, Liu H, et al. Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method[J]. Journal of Natural Gas Science and Engineering, 2016,33:56-69.
    [22] 孙可明,张树翠,李天舒.横观各向同性油气藏水力压裂裂纹扩展规律研究[J].计算力学学报,2016,33(5):767-772.SUN Keming, ZHANG Shucui, LI Tianshu. Study on the law of transverse isotropic reservoir crack extension during hydraulic fracture[J]. Chinese Journal of Computational Mechanics, 2016,33(5):767-772.
    [23] 王涛,高岳,柳占立,等.基于扩展有限元法的水力压裂大物模实验的数值模拟[J].清华大学学报(自然科学版),2014,54(10):1304-1309.WANG Tao, GAO Yue, LIU Zhanli, et al. Numerical simulations of hydraulic fracturing in large objects using an extended finite element method[J]. Journal of Tsinghua University(Science and Technology), 2014,54(10):1304-1309.
    [24] Taleghani A D, Gonzalez M, Shojaei A. Overview of numerical models for interactions between hydraulic fractures and natural fractures: Challenges and limitations[J]. Computers & Geotechnics, 2016,71:361-368.
    [25] Chen Z.r., Bunger A.P., Xi Z., et al. Cohesive zone finite element-based modeling of hydraulic fractures[J]. Acta Mechanica Solida Sinica, 2009,22(5):443-452.
    [26] Bryant E C, Hwang J, Sharma M M. Arbitrary fracture propagation in heterogeneous poroelastic formations using a finite volume-based cohesive zone model[C]// SPE Hydraulic Fracturing Technology Conference, 2015.
    [27] 谭现锋,张强,战启帅,等.干热岩储层高温条件下岩石力学特性研究[J].钻探工程,2023,50(4):110-117.TAN Xianfeng, ZHANG Qiang, ZHAN Qishuai, et al. Study on rock mechanical properties of hot-dry rock reservoir under high temperature[J]. Drilling Engineering, 2023,50(4):110-117.
    [28] 谭现锋,王浩,康凤新.利津陈庄干热岩GRY1孔压裂试验研究[J].探矿工程(岩土钻掘工程),2016,43(10):230-233.TAN Xianfeng, WANG Hao, KANG Fengxin. Experimental study on fracturing of GRY1 hot dry rock hole in Chenzhuang Town, Lijin County[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016,43(10):230-233.
    [29] 刘帅,柴军瑞,薛熠,等.热冲击作用对干热岩起裂压力与裂隙扩展形态的影响[J].地球物理学进展,2023,38(4):1487-1496.LIU Shuai, CHAI Junrui, XUE Yi. Influence of thermal shock on fracture initiation pressure and fracture morphology in hot dry rock hydraulic fracturing[J]. Progress in Geophysics, 2023,38(4):1487-1496.
    [30] 郭茂生,姬长发,刘宗鑫,等.青海共和盆地干热岩热储层人工水力致裂裂缝扩展规律[J].西安科技大学学报,2023,43(3):514-522.GUO Maosheng, JI Changfa, LIU Zongxin. Artificial hydraulic fracture propagation law of hot dry rock reservoir in Gonghe Basin, Qinghai Province[J]. Journal of Xi’An University of Science and Technology, 2023,43(3):514-522.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:231
  • PDF: 1232
  • HTML: 666
  • Cited by: 0
History
  • Received:September 11,2023
  • Revised:November 16,2023
  • Adopted:December 11,2023
  • Online: March 11,2024
  • Published: March 10,2024
Article QR Code