4/24/2025, 3:47:34 PM 星期四
Study and application of key technology enhancement of shale oil horizontal well cementing quality for Well GY5-1-4H
CSTR:
Author:
Affiliation:

1.PetroChina Dagang Oilfield Company Oil Production Technology Research Institute, Tianjin 300282, China;2.No.2 Cementing Company of CNPC Bohai Drilling Engineering Co., Ltd., Tianjin 300282, China;3.National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu Sichuan 610500, China

Clc Number:

TE256

  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • | | | |
  • Comments
    Abstract:

    Aiming at the problems of long horizontal section, complex wellbore conditions, difficulty in casing centralization, low displacement efficiency, and high performance requirements of cement system which restrict the improvement of cementing quality in shale oil horizontal wells, research on the collaborative optimization technology of drilling parameters and drill string assembly was carried out to meet the requirements of improving cementing quality for wellbore cleaning. In addition, the ideal casing centralization is designed by the simulation of displacement efficiency, and the integral stamping screw semi-rigid centralizer and the water displacement prestressed cementing technology are also optimized. Furthermore, the strength of cement paste is improved based on the toughness modification technology. The hydraulic fracturing requirements of shale oil wells can be met through ruducing the Young''s modulus and using the improved cement paste. All these work ensured the cementing quality of Well GY5-1-4H, so as to provide a worth considering key technology for long horizontal well cementing.

    Reference
    [1] 李娟.不同流态的顶替效率的数值模拟研究[D].北京:中国石油大学(北京),2009.LI Juan. Numerical simulation of displacement efficiency in different flow regimes[D]. Beijing: China University of Petroleum (Beijing), 2009.
    [2] 王智峰.复杂结构井岩屑床清除技术[J].石油钻采工艺,2009,31(1):102.WANG Zhifeng. Cutting bed removal technology for complex structure wells[J]. Petroleum drilling and production technology, 2009,31(1):102.
    [3] 王建龙.大斜度井井眼清洁影响因素及对策研究[J].钻采工艺,2020,43(6):28-30.WANG Jianlong. Study on influencing factors and countermeasures of wellbore cleaning in highly deviated wells[J]. Drilling & Production Technology, 2020,43(6):28-30.
    [4] 王建龙,郑锋.井眼清洁工具研究进展及展望[J].钻采工艺,2018,46(9):18-23.WANG Jianlong, ZHENG Feng. Research progress and prospect of borehole cleaning tools[J]. Drilling & Production Technology, 2018,46(9):18-23.
    [5] 李琪,文亮,孙乖平,等.实用简单的大斜度井井眼清洁模型的建立与应用[J].科学技术与工程,2014,14(9):155-159.LI Qi, WEN Liang, SUN Guaiping, et al. Establishment and application of a practical and simple wellbore cleaning model for highly deviated wells[J]. Science Technology and Engineering,2014,14(9):155-159.
    [6] 张弛,赵殊勋,王雅茹,等.大港油田大斜度大位移井固井技术难点及对策[J].西部探矿工程,2018,30(4):91-94.ZHANG Chi, ZHAO Shuxun, WANG Yaru, et al. Difficulties and countermeasures of cementing technology for high angle extended reach wells in Dagang Oilfield[J]. West-China Exploration Engineering, 2018,30(4):91-94.
    [7] 何雷,徐兆喜,祁永喜,等.吉木萨尔页岩油水平井井眼清洁技术研究与应用[J].石化技术,2022,29(6):51-53.HE Lei, XU Zhaoxi, QI Yongxi, et al. Research and application of borehole cleaning technology in Jimusar shale oil horizontal well[J]. Technical Study, 2022,29(6):51-53.
    [8] 何立成.胜利油田沙河街组页岩油水平井固井技术[J].石油钻探技术,2022,50(2):46-50.HE Licheng. Cementing technology of shale oil horizontal wells in Shahejie Formation of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2022,50(2):46-50.
    [9] 张凯.蜀南地区页岩气水平井固井水泥浆的设计及应用[J].钻井完井,2019,45(9):263-264.ZHANG Kai. Design and application of cementing slurry for shale gas horizontal wells in southern Sichuan[J]. Drilling Completion, 2019,45(9):263-264.
    [10] 赵军.页岩气井固井水泥浆体系研究进展[J].科技视界,2018(12):220-222.ZHAO Jun. Research progress on cementing mud system in shale gas Wells[J]. Science & Technology Vision, 2018(12):220-222.
    [11] 李振川,姚昌顺,胡开利,等.水平井井眼清洁技术研究与实践[J].新疆石油天然气,2022,18(1):48-53.LI Zhenchuan, YAO Changshun, HU Kaili, et al. Research and practice of horizontal wellbore cleaning technology[J]. Xinjiang Oil & Gas, 2022,18(1):48-53.
    [12] 彭博.水平井固井顶替效率模拟及优化[J].化工管理,2021(8):92-95.PENG Bo. Simulation and optimization of displacement efficiency of horizontal well cementing[J]. Chemical Management, 2021(8):92-95.
    [13] 张升峰.水平井固井技术研究与应用[J].清洗世界,2021,37(6):151-152.ZHANG Shengfeng. Research and application of horizontal well cementing technology[J]. Cleaning World,2021, 37(6):151-152.
    [14] 柳旭.提高页岩气水平井固井质量措施探讨[J].西部探矿工程,2020,32(3):97-98.LIU Xu. Discussion on measures to improve cementing quality of shale gas horizontal wells[J]. West-China Exploration Engineering, 2020,32(3):97-98.
    [15] 房皓.长宁—威远地区页岩气水平井固井技术研究[D].成都:西南石油大学,2015.FANG Hao. Study on cementing technology of shale gas horizontal well in Changning Weiyuan area[D]. Chengdu: Southwest Petroleum University,2015.
    [16] Torsæter M, Albawi A, Andrade J D, et al. Experimental set-up for testing cement sheath integrity in arctic wells[C]. OTC Arctic Technology Conference, 2014.
    [17] Andrade J D, Torsaeter M, Todorovic J, et al. Influence of casing centralization on cement sheath integrity during thermal cycling[M]. 2014.
    [18] Andrade J D, Sangesland S, Todorovic J, et al. Cement sheath integrity during thermal cycling: A novel approach for experimental tests of cement systems[C]. SPE Bergen One Day Seminar, 2015.
    [19] 张松.固体胶乳粉改善水泥石性能试验研究[D]. 成都:西南石油大学,2012.ZHANG Song. Experimental study on improving performance of cement paste with solid latex powder[D]. Chengdu: Southwest Petroleum University, 2012.
    [20] Sahmaran M , Yaman I O . Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash[J]. Construction & Building Materials, 2007, 21(1):150-156.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:1941
  • PDF: 1341
  • HTML: 1360
  • Cited by: 0
History
  • Received:November 11,2022
  • Revised:April 04,2023
  • Adopted:April 20,2023
  • Online: July 20,2023
  • Published: July 10,2023
Article QR Code