4/6/2025, 8:00:23 AM 星期日
Influence of key parameters of submerged water jets on the erosionvolume of natural gas hydrate sediments
CSTR:
Author:
Affiliation:

1.College of Construction Engineering, Jilin University, Changchun Jilin 130026, China;2.Key Laboratory of Drilling and Exploitation Technology in Complex Conditions of Ministry ofNatural Resources, Changchun Jilin 130026, China;3.State Key Laboratory of Superhard Materials, Changchun Jilin 130026, China)

Clc Number:

P634.1;TE21

  • Article
  • | |
  • Metrics
  • |
  • Reference [34]
  • |
  • Related [18]
  • | | |
  • Comments
    Abstract:

    The high- water jet technology has the superiority of the wide range of working medium and environmental protection, and can be used to break the submarine gas hydrate formations. In this paper, LS-DYNA finite element program is used to simulate the fragmentation process of submarine gas hydrate formations with high-pressure water jet under submerged condition. The effects of four key parameters (jet velocity, nozzle diameter, target distance and incident angle) on the erosion volume of hydrate formations are studied. The following conclusions are drawn: the fragmentation of hydrate sediments needs to meet the requirement that jet velocity is higher than the critical velocity; the erosion volume gradually increases with the increase of jet velocity; the increase of nozzle diameter will lead to the increase of the radial erosion volume of formations, thus increasing the overall erosion volume; the increase of target distance will increase the energy loss of water jet in the process of water movement, leading to the decrease of erosion volume; the erosion volume will increase first and then decrease with the increase of nozzle incidence angle, eventually tending to be stable. When the incident angle is 10°, the erosion volume can reach the maximum value.

    Reference
    [1] 杨林, 赵大军, 郭威,等. 天然气水合物泥浆制冷系统的野外试验研究[J]. 探矿工程(岩土钻掘工程), 2013(12):25-27.
    YANG Lin, ZHAO Dajun, GUO Wei, et al. Field test study of gas hydrate mud refrigeration system [J]. Prospecting Engineering (Geotechnical Drilling Engineering), 2013 (12): 25-27.
    [2] Qorbani K, Kvamme B, Kuznetsova T. Using a reactive transport simulator to simulate CH4 production from bear island basin in the Barents Sea utilizing the depressurization method. Energies 2017, 10, 187.
    [3] 可燃冰成新矿种 将加快推进产业化[J]. 中国能源,2017,39(11):1.
    Combustible ice-forming new minerals will accelerate industrialization [J].China Energy, 2017,39(11):1.
    [4] Yang L, Chen C, Jia R, et al. Influence of Reservoir Stimulation on Marine Gas Hydrate Conversion Efficiency in Different Accumulation Conditions[J]. Energies, 2018, 11(2):339.
    [5] Moon C, Taylor P C, Rodger P M. Clathrate nucleation and inhibition from a molecular perspective[J]. Revue Canadienne De Physique, 2003, 81:451-457.
    [6] 薛胜雄. 高压水射流技术工程[M]. 合肥工业大学出版社, 2006.
    XUE Shengxiong. High pressure water jet technology engineering [M]. Hefei University of Technology Press, 2006.
    [7] 孙家骏. 水射流切割技术[M]. 中国矿业大学出版社, 1992.
    SUN Jiajun. Water jet cutting technology [M]. China University of Mining and Technology Press, 1992.
    [8] 高文爽. 油页岩钻孔水力开采实验台设计及孔底流场数值模拟研究[D]. 吉林大学, 2011.
    GAO Wenshuang. Design of hydraulic drilling test bench for oil shale drilling and numerical simulation of bottom hole flow field [D]. Jilin University, 2011.
    [9] 温继伟. 油页岩钻孔水力开采用射流装置的数值模拟与实验研究[D]. 吉林大学, 2014.
    WEN Jiwei. NUMERICAL SIMULATION AND EXPERIMENTAL RESEARCH ON JET EQUIPMENT FOR HYDRAULIC EXPLOITATION OF OIL SHALE BOREHOLE [D]. Jilin University, 2014.
    [10] 周守为, 陈伟, 李清平,等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4):1-8.
    ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research and progress of solid-state fluidization test production technology for deep-water shallow non-diagenetic gas hydrates [J]. China Offshore Oil and Gas, 2017, 29 (4): 1-8.
    [11] 朱伯芳. 有限单元法原理与应用[M]. 水利电力出版社, 1979.
    ZHU Bofang. Principle and Application of Finite Element Method [M]. Hydraulic and Electric Power Press, 1979.
    [12] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析[M]. 清华大学出版社, 2005.
    SHI Dangyong, LI Yuchun, ZHANG Shengmin. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. Tsinghua University Press, 2005.
    [13] Hallquist J O. LS-Dyna Theory manual[J]. 2006, 53(2):155–161.
    [14] Liu S, Liu Z, Cui X, et al. Rock breaking of conical cutter with assistance of front and rear water jet[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2014, 42(5):78-86.
    [15] 倪红坚,王瑞和. 高压水射流射孔过程及机理研究[J]. 岩土力学, 2004,25:29-32.
    NI Hongjian, WANG Ruihe. Study on perforation process and mechanism of high pressure water jet [J]. Geotechnical Mechanics, 2004, 25:29-32.
    [16] 倪红坚,王瑞和,张延庆.高压水射流作用下岩石破碎机理及过程数值模拟研究[J]. 应用数学和力学,2005, 26(12):1445-1452.
    NI Hongjian, WANG Ruihe, ZHANG Yanqing. Numerical simulation of rock fragmentation mechanism and process under high pressure water jet [J].Applied Mathematics and Mechanics, 2005, 26 (12): 1445-1452.
    [17] 顾磊,倪福生,张浩. 基于ALE方法的射流冲刷砂土和黏土的数值计算[J]. 科学技术与工程,2017, 17(11):103-107.
    GU Lei, NI Fusheng, ZHANG Hao. Numerical calculation of jet scouring sand and clay based on ALE method [J]. Science and Technology and Engineering, 2017, 17 (11): 103-107.
    [18] Clayton C R I, Priest J A, Best A I. The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand[J]. Géotechnique, 2005, 55(6):423-434.
    [19] Lu Y, Huang F, Liu X, et al. On the failure pattern of sandstone impacted by high-velocity water jet[J]. International Journal of Impact Engineering, 2015, 76:67-74.
    [20] Momber A W. Wear of rocks by water flow[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(1):51-68.
    [21] 张旭辉,王淑云,李清平. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074.
    ZhANG Xuhui, WANG Shuyun, LI Qingping. Experimental study on mechanical properties of natural gas hydrate sediments [J]. Geotechnical Mechanics, 2010, 31 (10): 3069-3074.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:1159
  • PDF: 1021
  • HTML: 273
  • Cited by: 0
History
  • Received:March 28,2019
  • Revised:April 17,2019
  • Adopted:April 17,2019
  • Online: May 17,2019
Article QR Code