2024, 51(S1):61-69.DOI: 10.12143/j.ztgc.2024.S1.009
摘要:岩土体物理力学参数对工程勘察、设计、施工等作业不可或缺,但常规取样试验或原位检测均存在明显的精度误差。据此本文提出基于勘察钻探的实时钻进参数,建立基于机器学习的随钻土体物理力学参数模型。通过采集位于珠海市国家高新技术产业开发区内20 m勘探孔的真实数据,将EP-200G型钻机实时随钻采集的钻压、扭矩和三轴振动作为输入数据,将全孔土体粘聚力、内摩擦角、含水量与弹性模量试验数据作为输出。基于建模数据分析,证明使用单算法的3类机器学习模型(支持向量机、神经网络和决策树)的预测精度最高仅为0.78,而基于Stacking理念的集成模型可将预测精度提升至最高0.98。结合该模型,进行了随钻参数与土体参数间的敏感性分析,证实当不同土体参数发生变化时,不同随钻参数会发生明显变化,证明了随钻参数预测土体参数的可靠性与适用性。