摘要
在极地开展中深及深冰芯钻探项目,对获取古气候信息、揭示冰盖运动规律以及预测未来全球环境变化等方面均具有重要意义。从20世纪60年代开始,世界各国已经在极地完成了26个中深冰芯钻探项目和14个深冰芯钻探项目。目前,仍有Dome A、Beyond EPICA、MYIC、Dome Fuji和Hercules Dome等5个深冰芯钻探项目正在实施中,且俄罗斯正在筹划Dome B的深冰芯钻探项目。目前,我国仅实施过1个中深冰芯钻探项目,而深冰芯钻探项目的深度刚突破800 m。与欧洲、美国、日本和俄罗斯相比,我国在中深和深冰芯钻探技术领域施工经验少,装备自主化程度低,技术水平落后。为此,我国应积极研发具有自主知识产权的深冰芯电动机械钻具,加快实施Dome A深冰芯钻探工程,开展中深冰芯钻探及古老蓝冰钻探项目,突破冰层快速钻探和定向取芯钻探等关键技术,从而促进我国极地冰芯钻探技术的发展,提高在极地冰芯科学领域的影响力。
极地冰盖主要包括南极冰盖和格陵兰冰盖,其占到了地球表面积的11
钻探是在极地冰盖中获取冰芯的唯一手段,也是开展冰芯科学研究的前提。虽然人类早在1841年就已经开始发展冰芯钻探技术,但对极地雪冰样品的获取长期依赖雪坑进
在工程上,按照钻探深度的不同可以将冰芯钻探分为浅表钻探(0~50 m)、浅冰芯钻探(50~400 m)、中深冰芯钻探(400~1500 m)和深冰芯钻探(1500~4000 m
中深冰芯钻探项目和深冰芯钻探项目均有各自不同的发展特点,以下将从这两个方面分别阐述其发展现状。
如
主导国家 | 地 点 | 钻探点坐标 | 时间 | 孔深/m | 钻具 | 冰厚/m | 海拔/m | 地表平均气温/℃ | 降雪积累率/(m· | 钻井液 |
---|---|---|---|---|---|---|---|---|---|---|
前苏联/俄罗斯 |
Vosto | 78.47°S,106.87°E | 1970—1973 | 952.4(1G) | TELGA-14 | 3769 | 3488 | -55 | 0.022 | 无 |
Lazarev冰 | 70.48°S,11.75°E | 1976 | 447 | ETB-3 | 447 | — | -15 | — | 乙醇水溶液 | |
Novolazarezkaya 站以南40k | 70.97°S,11.37°E | 1977 | 812 | ~1000 | — | — | — | |||
Camp J- | 82.37°S,168.62°W | 1978 | 420 | 420 | ~600 | -28 | — | |||
Gornaya基 | 67.20°S,93.28°E | 1978 | 750 | TELGA-14M、TBZS-152M | — | — | — | — | ||
Komsomolskaya | 74.10°S,97.50°E | 1982—1983 | 871.5 | ETB-5 | — | 3500 | -53 | — | ||
Mirny站—Vostok站105 km | — | 1987—1988 | 740 | TELGA-14M、TBZS-152M | — | — | — | — | TS-1 | |
Old Dome | 77.06°S,94.92°E | 1987—1988 | 780 | ETB-130、ETB-5 | — | 3770 | -57.5 | 0.035 | 乙醇水溶液 | |
美国 |
Site | 76.98°N,56.07°E | 1957 | 411 | Failing Model 314钻机 | — | ~2000 | -25.4 | — | 压缩空气 |
Crêt | 71.12°N,37.32°E | 1974 | 404 | — | — | 3172 | -30.4 | 0.298 | — | |
Camp Centur | 77.17°N,61.13° W | 1963—1966 | 1387 | CRREL | 1387 | 1887 | -24 | 0.33 | DF-A+三氯乙烯 | |
Camp J- | 82.37°S,168.62°W | 1978 | 416 | PICO绳索钻具 | 420 | ~600 | -28 | — | — | |
Taylor Dom | 77.70°S,159.07°E | 1993—1994 | 554 | PICO-5.2″ | 554 | 2375 | -43 | 0.06 | 乙酸丁酯 | |
Siple Dom | 81.65°S,148.81°W | 1997—1999 | 1004 | 1004 | 620 | -25 | 0.11 | |||
Bruce Plate | 66.03°S,64.07°W | 2009—2010 | 447 | ETED | 447 | 1975.5 | -14.78 | 2 | 乙醇水溶液 | |
英国 |
Berkner Islan | 79.55° S,45.68°W | 2003—2005 | 948 | Hans Tausen | 948 | 890 | -26.5 | 0.13 |
Exxso |
Fletcher Promontor | 77.90°S,82.60°W | 2011—2012 | 654 | 654 | 873 | -27.1 | 0.38 | Exxsol D60 | ||
Skytrain Ice Ris | 79.74°S,78.55°W | 2018—2019 | 651 | 651 | 784 | -25.9 | 0.14±0.02 | Exxsol D60 | ||
丹麦 |
Renlan | 71.31°N,26.72°W | 2015 | 584 | UCPH | 584 | 2340 | -18 | 0.49 | ESTISOL™140 |
Flade Isblin | 81.29°N,15.70°W | 2006 | 436 | Hans Tausen | ~540 | — | -22 | — | ESTISOL™240+COASOL™ | |
法国 |
Dome | 75.10°S,123.35°E | 1977—1978 | 905 | LGGE热融钻具 | 3275 | 3233 | -54 | 0.036 | 无 |
D47, Adélie Lan | 67.39°S,138.73°E | 1987—1989 | 871 | Forage 4000 | — | 1560 | — | — | DF-A+CFC 11 | |
日本 |
Mizuho | 70.70°S,44.33°E | 1983—1984 | 700.6 | JARE 热融钻具 | 2095 | 2230 | -33.2 | 0.07 | 无 |
澳大利亚 |
BH | ~66.50°S,111.80°E | 1977 | 430 | ANARE热融钻具 | 780 | ~1000 | — | — | — |
474 | ||||||||||
Law Dom | 66.77°S,112.80°E | 1991—1993 | 1200 | ISTUK | 1220 | 1370 | -22 | 0.7 | Jet A-1+全氯乙烯 | |
新西兰 |
Roosevelt Islan | 79.36°S,161.71°W | 2011—2012 | 763 | Hans Tausen | 763 | 550 | -23.5 | 0.22 | ESTISOL™240+COASOL™ |
中国 | 中山站以南25 km | 69.59°S,76.39°E | 2023—2024 | 545 | IBED | 545 | 692.7 | -17.8 | — | Jet A-1+HCFC 141b |
继美国之后,世界多国在南极和格陵兰岛开展了中深冰芯钻探工程。迄今为止,共有美国、丹麦、前苏联/俄罗斯、日本、英国、法国、澳大利亚、新西兰和中国等9个国家在极地开展了26个中深冰芯钻探项目(

图1 极地中深及深冰芯钻探地点
Fig.1 Drilling sites for intermediate‑depth and deep ice‑core drilling projects
●黑色圆点表示已经完成的深冰芯钻探项目地点;●橙色圆点表示已经完成的中深冰芯钻探项目地点;●蓝色圆点表示既有深冰芯钻探项目,也有中深冰芯钻探项目的地点;●紫色圆点表示尚未完成的深冰芯钻探项目地点;●红色圆点表示正在规划中的深冰芯钻探项目地点

图2 不同国家的中深及深冰芯钻探项目数
Fig.2 Number of intermediate‑depth and deep ice‑core drilling projects in different countries

图3 我国首个中深冰芯钻探项目营地
Fig.3 Drilling camp of Chinese first intermediate‑depth ice‑core drilling project
从时间上来看,20世纪70年代和80年代是开展中深冰芯钻探最活跃的时期(

图4 不同年代中深及深冰芯钻探项目数(按照完成钻探项目的时间统计)
Fig.4 Number of intermediate‑depth and deep ice‑core drilling projects cin different decades (counted according to the time completing the drilling projects)
从地域分布上可以看出,除Vostok、Dome C、Old Dome B和Komsomolskaya等少数几个钻探点外,大部分的中深冰芯钻探点均位于距离海岸带较近的区域。相比南极内陆,这些地区的冰盖相对较薄、海拔较低、平均气温和降雪积累率较高。当然,从这些地区钻取的冰芯年龄也相对较小。
除前苏联/俄罗斯、法国和日本使用热融取芯钻具开展过中深冰芯钻探外,其他国家一般均采用电动机械钻具。这主要与冰芯钻探技术的发展历史相关,前苏联/俄罗斯、法国和日本的中深冰芯钻探集中在20世纪70和80年代,彼时,热融取芯钻具尚在普遍使用。进入90年代以后,热融取芯钻具逐渐退出历史舞台,电动机械钻具在中深冰层钻探中开始占据主导地位。热融取芯钻具一般采用乙二醇水溶液作为钻井液,而电动机械钻具则一般采用耐低温油类,并配以氟氯烃类物质作为加重剂。
如
主导国家 | 地 点 | 钻探点坐标 | 时间 | 孔深/m | 钻具 | 冰厚/m | 海拔/m | 地表平均气温/℃ | 降雪积累率/(m· | 钻井液 |
---|---|---|---|---|---|---|---|---|---|---|
丹麦 |
Dye3 | 65.18°N,43.82°W | 1979—1981 | 2037 | ISTUK | 2037 | 2490 | -20 | 0.56 | Jet A-1+全氯乙烯 |
GRI | 72.58°N,37.63°W | 1989—1992 | 3029 | 3029 | 3238 | -32 | 0.23 | Exxsol™ D60+CFC 113 | ||
NGRI | 75.10°N,42.32°W | 1996—1997 | 1310 | 3091 | 2917 | -32 | 0.19 | Exxsol™ D60+HCFC 141b | ||
1998—2003 | 3085 | |||||||||
NEE | 77.45°N,51.60°W | 2007—2012 | 2540 | Hans Tausen | 2540 | 2450 | -29 | 0.22 | ESTISOL™240+COASOL™ | |
EGRI | 75.63°N,36.00°W | 2016—2023 | 2664 | 2664 | 2708 | -30 | 0.11 | |||
美国 |
Byrd | 80.02°S,119.52°W | 1966—1968 | 2164 | CREEL | 2164 | 1530 | -28 | 0.14 | DF-A+三氯乙烯 |
GISP | 72.60°N,38.50°W | 1989—1993 | 3035 | PICO-5.2” | 3053 | 3200 | -32 | 0.22 | 乙酸丁酯 | |
WAIS Divid | 79.47°S,112.09°W | 2006—2012 | 3405 | DISC | 3455 | 1766 | -30 | 0.22 | Isopar K+HCFC 141b | |
South Pol | 89.99°S,98.16°W | 2014—2016 | 1751 | IDD | 2700 | 2835 | -49 | 0.08 | ESTISOL™140 | |
欧盟 |
Dome | 75.10°S,123.35°E | 1999—2004 | 3260 | Hans Tausen | 3275 | 3233 | -54 | 0.036 | Exxsol™ D30+HCFC 141b |
Kohne | 75°S,0°E | 2000—2006 | 2774 | 2774 | 2892 | -44 | 0.064 | Exxsol™ D40+HCFC 141b | ||
前苏联/俄罗斯 |
Vosto | 78.47°S,106.87°E | 1980—1986 | 2202(3G) | TELGA-14M、TBZS-152M、TBS-112VCh、KEMS-112/132/135 | 3769 | 3488 | -55 | 0.022 | TS-1+CFC 11、TS-1+HCFC 141b |
1986—1989 | 2546(4G) | |||||||||
1990—2012 | 3769(5G) | |||||||||
日本 |
Dome | 77.32°S,39.70°E | 1993—1996 | 2504 | JARE | 3035 | 3810 | -58 | 0.03 | 乙酸丁酯 |
2003—2007 | 3035 | |||||||||
意大利 |
Talos Dom | 72.78°S,159.07°E | 2005-2007 | 1620 | Hans Tausen | 1795 | 2318 | -41 | 0.08 |
Exxso |
从
除Vostok深冰芯钻探工程中部分井段使用了热融取芯钻具外,所有的深冰芯钻探项目均采用铠装电缆悬吊的电动机械钻具。常见的电动机械钻具包括ISTUK、PICO-5.2”、CREEL、Hans Tausen、DISC、KEMS和JARE钻
值得一提的是,深冰芯钻探工程施工具有较大的卡钻风险。在目前已经完成的14个深冰芯钻探工程中,Dome C、Dome Fuji、Vostok和NorthGRIP等4个项目均发生过因卡钻而不得不放弃钻孔的现象。Dome C的第一个钻孔在钻至783 m时发生卡钻,不得不从地表开始重新钻
美国是世界上最早开展中深冰芯和深冰芯钻探项目的国家,其在极地共完成11项中深冰芯和深冰芯钻探项目。前苏联/俄罗斯完成的中深冰芯和深冰芯钻探项目也达到了9项之多,但前苏联/俄罗斯的钻探项目多集中在20世界70年代,使用的钻探设备和钻探工艺较陈旧,且许多中深冰芯钻探项目均未透底。因此,综合来看,美国在极地中深冰芯和深冰芯钻探领域处于领先地位。丹麦作为格陵兰岛的所有国,其在极地共完成中深冰芯和深冰芯钻探项目7项,走在世界前列,尤其是在深冰芯钻探领域,其掌握了先进的技术、积累了丰富的工作经验。欧盟各国一般联合在一起开展深冰芯钻探项目,而且深度介入丹麦在格陵兰岛的各项钻探工程。英国在极地主要开展中深层冰芯的钻取。相比于欧、美、日等国家,我国在极地中深及深冰芯钻探领域起步晚,实施钻探工程少,钻探经验相对匮乏。
中深冰芯和深冰芯钻探工程多在极地偏远地区实施,一般均需较强的后勤保障支撑。因此,世界各国的钻探项目主要依靠其科考站进行,这导致各国的冰芯钻探工程呈现出明显的地域性特点。美国、英国和新西兰在南极的科考站主要集中在西南极地区,故其冰芯钻探项目也主要分布在西南极;前苏联/俄罗斯、欧盟、日本、澳大利亚和中国的冰芯钻探项目则主要集中在东南极;丹麦所有的中深冰芯和深冰芯钻探项目全部位于格陵兰岛。
与中深冰芯钻探项目相比,深冰芯钻探项目一般位于极地内陆地区,其冰盖厚度更大、自然环境更恶劣、后勤保障更困难。这就导致深冰芯钻探工程的钻探时间一般长达3~8年,Vostok站5G钻孔的钻探时间甚至长达12年,远超中深冰芯钻探项目1~3年的钻探周期。这也导致深冰芯钻探工程资金投入很大,为此,一些深冰芯钻探工程并不由单个国家独自开展,而是通过广泛的国际合作来获取资金和技术支持。例如,丹麦主导的EGRIP项目,就包括了来自美国、英国、中国、加拿大、法国、德国、冰岛、意大利、日本、挪威、韩国、瑞典、瑞士等13个国家的合作伙伴。
深冰芯钻探工程因其资金投入大、钻探技术难度高、科学价值突出、社会影响力大等因素,受到极地科学界的广泛关注。虽然目前已经在极地完成了诸多深冰芯钻探项目,但仍有5项深冰芯钻探项目正在实施过程中(见
主导国家 | 地 点 | 钻探点坐标 | 时间 | 当下孔深/m | 钻具 | 冰厚/m | 海拔/m | 地表平均气温/℃ | 降雪积累率/(m· | 钻井液 |
---|---|---|---|---|---|---|---|---|---|---|
中国 |
Dome | 80.42°S,77.12°E | 2012至今 | 803.7 | JARE | 3090 | 4092 | -58 | 0.025 | 乙酸丁酯 |
欧盟 |
Little Dome | 75.30°S,122.45°E | 2021至今 | 1836.18 | AWI | 2760 | 3233 | -55 | 0.019 | ESTISOL™140 |
澳大利亚 |
Little Dome | 75.34°S,122.52°E | 2023至今 | 无 | — | 2760 | 3233 | -55 | 0.019 | — |
日本 |
Dome Fuj | 77.31°S,39.70°E | 2023至今 | — | JARE | 3028 | 3810 | -58 | 0.03 | 乙酸丁酯 |
美国 |
Hercules Dom | ~85.8°S,102.9°W | 预计2026—2030 | 无 | Foro 3000 | ~1600 | ~2618 | -41 | 0.13 | Isopar K或ESTISOL™140 |
Dome A深冰芯钻探工程由我国主导实施,项目于2012年第28次中国南极考察期间开始施工,当年即钻探至120.79 m的深

图5 Dome A深冰芯钻探项目突破800
Fig.5 Breakthrough of 800m in Dome A deep ice‑core drilling project
欧盟在完成EPICA项目后,只找到了冰龄为80万年的冰芯。为了找到冰龄超过150万年的古老冰芯,欧盟启动了Beyond EPICA项目(见

图6 Beyond EPICA项目钻探营
Fig.6 Drilling camp of Beyond EPICA project
澳大利亚在2016年首次提出在东南极开展深冰芯钻探项目MYIC(Million Year Ice Core),以寻找冰龄超过百万年的古老冰

图7 澳大利亚科研人员抵达MYIC项目钻探
Fig.7 Australian researchers arrived at the drilling site of MYIC project
从2016年开始,日本和美国、德国、挪威合作连续多年在Dome Fuji及其周边区域开展了一系列冰川学调查,如冰雷达探测以及浅冰芯钻探等,为在该地区开展深冰芯钻探工程进行选
Hercules Dome位于西南极Horlick山和Thiel 山之间,距离南极点约400 k
从20世纪60年代开始,世界各国已经在极地开展了诸多中深及深冰芯钻探项目。目前,极地深冰芯钻探工程仍在如火如荼的开展。相较于欧、美、日和俄罗斯等发达国家,我国在中深及深冰芯钻探领域还有较大的差距。为此,我国应积极吸取国外中深及深冰芯钻探项目的经验教训,在项目规划实施及关键技术突破方面加快发展步伐。
在项目规划实施方面,我国应基于已有后勤保障条件积极开展中深冰芯钻探,同时加快推进实施深冰芯钻探工程,并开展古老蓝冰搜寻及相关钻探项目。
吉林大学研发的IBED钻具采用移动式钻探舱,其钻探能力达到1500 m,可在冰盖上实现灵活快速移
极地深冰芯钻探是一项工期长、资金投入大、科研产业链长的大科学工程,对项目主导方有很高的要求。为此,很多深冰芯钻探工程并不是由一个国家单独来承担的,而是由多方共同出资、共同参与的,从而实现资金、技术和人力的共享,达到科研成果最大程度的产出。例如,EGRIP项目和Beyond EPICA项目就由数十个国家共同完成。我国在后续开展深冰芯钻探项目时,如果在资金、技术和人力方面存在困难,亦可采用这种发展模式,最大程度推动科研成果的产出,提高我国在冰芯科学研究领域的影响力。
深冰芯钻探仍然是当下极地科学研究的前沿领域,美国、欧盟、澳大利亚、俄罗斯、日本等发达国家均在积极开展深冰芯钻探项目。我国主导的Dome A深冰芯钻探项目目前已经钻至803 m的深度,有望在冰盖底部发现古老冰芯,从而为Dome A地区的古气候演化提供重要依据。继续实施Dome A深冰芯钻探工程,不仅能够促进我国深冰芯钻探技术的进步,培养相关专业人才,而且能够提高我国冰芯科学研究水平,增强在南极相关事务上的话语权。因此,我国应做好规划,加快实施Dome A深冰芯钻探工程。
深冰芯钻探项目大多都为寻找最古老的冰芯。但近年来的研究表明,极地的蓝冰区域能获取比深冰芯钻探项目更古老的冰芯样品。为此,美国已经在南极Allan山开展了多次蓝冰搜寻项目,并专门研发了大直径蓝冰钻具BID(Blue Ice Drill)用于蓝冰样品的钻
在中深及深冰芯钻探技术方面,我国应研发具有自主知识产权的深冰芯电动机械钻具及冰层快速钻探技术,同时突破定向取芯钻探、脆冰层和暖冰层钻探等关键技术。
极地中深及深冰芯的钻取既可以采用热融取芯钻具,也可采用电动机械钻具。热融取心钻具因功率消耗大、冰芯质量差、含灰尘冰层钻进困难等原因,在20世纪90年代之后,已经逐渐被电动机械钻具取代,目前已经很少有国家利用热融取芯钻具开展中深及深冰芯钻探工程了。有鉴于此,我国在发展冰芯钻探技术时,应以电动机械钻具为主。目前,中国科学院西北生态资源研究院已经研发出高效的BZXJ系列浅冰芯钻
深冰芯钻探工程投入大、成本高,且不一定能够钻获古老的冰芯样品,具有较大的风险性。但是如果能在开展深冰芯钻探工程之前,先在目标钻探点快速钻穿冰盖,确认冰层年龄,那么就能够极大地减少深冰芯钻探项目的风险。为此,美国的RAID钻
中深及深冰芯钻探工程对极地冰芯科学的发展具有重要意义。在过去约60年的时间里,世界各国已经在南极和格陵兰冰盖完成了26个中深冰芯钻探工程和14个深冰芯钻探工程,获取了大量的古气候、古环境信息,有力促进了冰芯科学的发展和进步。总的来看,中深及深冰芯钻探项目方兴未艾,目前仍有多个深冰芯钻探项目正在实施和规划中。目前,美、欧、日和俄罗斯等国在中深及深冰芯钻探领域位居世界前列。相比之下,我国在中深和深冰芯钻探技术领域施工经验少,装备自主化程度低,技术水平落后。有鉴于此,我国应通过合理规划和开展国际合作等方式突破冰层快速钻探和定向取芯钻探等关键技术,研发具有自主知识产权的深冰芯钻具,加快实施Dome A深冰芯钻探工程,开展中深冰芯钻探及古老蓝冰钻探项目,从而促进我国极地冰芯科学的研究水平,提高在极地事务的话语权。
参考文献(References)
Graham A G C. Ice sheet[M]//Singh V P, Singh P, Haritashya U K. Encyclopedia of Snow, Ice and Glaciers. Berlin: Springer, 2011:592-608.. [百度学术]
Cuffey K M, Paterson W S B. The Physics of Glaciers (4th ed.) [M]. Burlington, MA: Butterworth-Heinemann/Elsevier, 2010. [百度学术]
姚檀栋.冰芯研究与全球变化[J].中国科学院院刊,1996,11(5):368-371. [百度学术]
YAO Tandong. Ice core research and global change[J]. Bulletin of the Chinese Academy of Sciences, 1996,11(5):368-371. [百度学术]
姚檀栋,王宁练.冰芯研究的过去、现在和未来[J].科学通报,1997,42(3):225-230. [百度学术]
YAO Tandong, WANG Ninglian. The past, present and future of ice core research[J]. Chinese Science Bulletin, 1997,42(3): 225-230 [百度学术]
王宁练,姚檀栋.冰芯对于过去全球变化研究的贡献[J].冰川冻土,2003,25(3):275-287. [百度学术]
WANG Ninglian, YAO Tandong. Contributions of ice core to the past global change research[J]. Journal of Glaciology and Geocryology, 2003,25(3):275-287. [百度学术]
Clarke G K C. A short history of scientific investigations on glaciers[J]. Journal of Glaciology, 1987,3(S1):4-24. [百度学术]
Langway Jr C C. The history of early polar ice cores[J]. Cold Regions Science and Technology, 2008,52(2):101-117. [百度学术]
Roberts B R. Norwegian-British-Swedish Antarctic expedition, 1949-52[J]. Nature, 1950,165(4184):8-9. [百度学术]
Schytt V. The Norwegian-British-Swedish Antarctic expedition, 1949-52: I. summary of the glaciological work: Preliminary report [J]. Journal of Glaciology, 1953,2(13):204-205. [百度学术]
Korsmo F L. The genesis of the international geophysical year[J]. Physics Today, 2007,60(7):38-43. [百度学术]
Talalay P G. Mechanical Ice Drilling Technology[M]. Singapore: Springer, 2016. [百度学术]
Talalay P G. Thermal Ice Drilling Technology[M]. Singapore: Springer, 2020. [百度学术]
Hansen B L, Langway C C J. Deep core drilling in ice and core analysis at Camp Century, Greenland, 1961-1966[J]. Antarctic Journal of the United States, 1966,1(5):207-208. [百度学术]
Ueda H T, Garfield D E. Drilling through the Greenland ice sheet: AR-126[R]. Hanover: 1968:1-7. [百度学术]
Vasiliev N I, Talalay P G, Bobin N E, et al. Deep drilling at Vostok Station, Antarctica: History and recent events[J]. Annals of Glaciology, 2007,47:10-23. [百度学术]
王秋雯,李冰, Talalay Pavel,等.南极东方站深冰层及冰下湖钻探技术[J].钻探工程,2021,48(9):35-46. [百度学术]
WANG Qiuwen, LI Bing, Talalay Pavel, et al. Drilling technology for deep ice and the subglacial lake at Vostok Station,Antarctica[J]. Drilling Engineering, 2021,48(9):35-46. [百度学术]
Narita H, Mae S, Nakawo M, et al. Ice‑coring at Mizuho Station, Antarctica, and core analyses: A contribution from the Glaciological Research Program in East Dronning Maud Land, Antarctica[J]. Annals of Glaciology, 1988,10(1):213. [百度学术]
Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999,399(6735):429-436. [百度学术]
Zagorodnov V, Thompson L G, Kelley J J, et al. Antifreeze thermal ice core drilling: An effective approach to the acquisition of ice cores[J]. Cold Regions Science and Technology, 1998,28(3):189-202. [百度学术]
Ueda H T, Talalay P G. Fifty years of Soviet and Russian drilling activity in polar and non‑polar ice: A chronological history: ERDC/CRREL TR-07-20[R]. 2007:1-130. [百度学术]
Morev V A, Manevskiy L N, Yakovlev V M, et al. Drilling with ethanol‑based antifreeze in Antarctica[C]//Proceedings of the Third International Workshop on Ice Drilling Technology. Grenoble, 1988:110-133. [百度学术]
Zotikov I A. Antifreeze‑thermodrilling for core through the central part of the Ross Ice Shelf (J-9 Camp), Antarctica: CRREL Report 79-24[R]. Hanover: 1979:1-12. [百度学术]
Lange G R. Deep rotary core drilling in ice: CRREL Technical Report 94[R]. Hanover: 1973: 1-48. [百度学术]
Langway J C C, Clausen H B, Hammer C U. An inter‑hemispheric volcanic time‑marker in ice cores from Greenland and Antarctica[J]. Annals of Glaciology, 1988,10(1):102-108. [百度学术]
Clausen H B, Gundestrup N S, Johnsen S J, et al. Glaciological investigations in the Crête area, central Greenland: A search for a new deep‑drilling site[J]. Annals of Glaciology, 1988,10(1):10-15. [百度学术]
Drinkwater M R, Long D G, Bingham A W. Greenland snow accumulation estimates from satellite radar scatterometer data[J]. Journal of Geophysical Research-Atmospheres, 2001,106(D24):33935-33950. [百度学术]
Fitzpatrick J J. Preliminary report on the physical and stratigraphic properties of the Taylor Dome ice core[J]. Antarctic Journal of the United States, 1994,29(5):84. [百度学术]
David L M, Waddington E D, Marshall H, et al. Accumulation rate measurements at Taylor Dome, East Antarctica: Techniques and strategies for mass balance measurements in polar environments[J]. Geografiska Annaler Series A-Physical Geography, 1999,81(4):683-694. [百度学术]
Gow A J, Meese D. Physical properties, crystalline textures and c‑axis fabrics of the Siple Dome (Antarctica) ice core[J]. Journal of Glaciology, 2007,53(183):573-584. [百度学术]
Zagorodnov V, Nagornov O, Scambos T A, et al. Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula[J]. The Cryoshere, 2012,6(3):675-686. [百度学术]
Mulvaney R, Alemany O, Possenti P. The Berkner Island (Antarctica) ice‑core drilling project[J]. Annals of Glaciology, 2007,47(1):115-124. [百度学术]
Mulvaney R, Triest J, Alemany O. The James Ross Island and the Fletcher Promontory ice-core drilling projects[J]. Annals of Glaciology, 2014,55(68):179-188. [百度学术]
Mulvaney R, Rix J, Polfrey S, et al. Ice drilling on Skytrain Ice Rise and Sherman Island , Antarctica[J]. Annals of Glaciology, 2021,62(85-86):311-323. [百度学术]
Koldtoft I, Grinsted A, Vinther B M, et al. Ice thickness and volume of the Renland Ice Cap, East Greenland[J]. Journal of Glaciology, 2021,67(264):714-726. [百度学术]
Hughes A G, Jones T R, Vinther B M, et al. High‑frequency climate variability in the Holocene from a coastal‑dome ice core in east‑central Greenland[J]. Climate of the Past, 2020,16(4):1369-1386. [百度学术]
Lorious C, Donnou D. A 905‑meter deep core drilling at Dome C (East Antarctica) and related surface programs[J]. Antarctic Journal of the United States, 1978,13(4):50-51. [百度学术]
Etheridge D M. Dynamics of the Law dome ice cap, Antarctica, as found from borehole measurements[J]. Annals of Glaciology, 1989,12:46-50. [百度学术]
Morgan V I, Wookey C W, Li J, et al. Site information and initial results from deep ice drilling on Law dome, Antarctica[J]. Journal of Glaciology, 1997,43(143):3-10. [百度学术]
Lee J E, Brook E J, Bertler N A N, et al. An 83000‑year‑old ice core from Roosevelt Island, Ross Sea, Antarctica[J]. Climate of the Past, 2020,16(5):1691-1713. [百度学术]
Ueda H T. Byrd Station drilling 1966-69[J]. Annals of Glaciology, 2007,47:24-27. [百度学术]
Alley R B, Anandakrishnan S. Variations in melt‑layer frequency in the GISP2 ice core: Implications for Holocene summer temperatures in central Greenland[J]. Annals of Glaciology, 1995,21(1):64-70. [百度学术]
Johnson J A, Kuhl T, Boeckmann G, et al. Drilling operations for the South Pole Ice Core (SPICEcore ) project[J]. Annals of Glaciology, 2021,62(84):75-88. [百度学术]
Wilhelms F, Miller H, Gerasimoff M D, et al. The EPICA Dronning Maud Land deep drilling operation[J]. Annals of Glaciology, 2014,55(68):355-366. [百度学术]
Augustin L, Panichi S, Frascati F. EPICA Dome C 2 drilling operations: Performances, difficulties, results[J]. Annals of Glaciology, 2007,47:68-72. [百度学术]
Jouzel J, Masson‑Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800,000 years[J]. Science, 2007,317(5839):793-796. [百度学术]
Litvinenko V S, Vasiliev N I, Lipenkov V Y, et al. Special aspects of ice drilling and results of 5G hole drilling at Vostok Station, Antarctica[J]. Annals of Glaciology, 2014,55(68):173-178. [百度学术]
孙友宏,李冰,范晓鹏,等.南极冰下湖钻进与采样技术研究进展[J]. 探矿工程(岩土钻掘工程),2017,44(S1):16-22. [百度学术]
SUN Youhong, LI Bing, FAN Xiaopeng, et al. Research progress of drilling and sampling technologies in Antarctic subglacial lake [J]. Exploration Engineering (Rock Soil Drilling and Tunneling), 2017, 44(S1): 16-22. [百度学术]
Turkeev A, Vasilev N, Lipenkov V Y, et al. Drilling the new 5G-5 branch hole at Vostok Station for collecting a replicate core of old meteoric ice[J]. Annals of Glaciology, 2021,62(85/86):305-310. [百度学术]
Motoyama H, Takahashi A, Tanaka Y, et al. Deep ice core drilling to a depth of 3035.22 m at Dome Fuji, Antarctica in 2001-07[J]. Annals of Glaciology, 2021,62(85/86):212-222. [百度学术]
张楠,王亮,Talalay Pavel,等.极地冰钻关键技术研究进展[J].探矿工程(岩土钻掘工程),2020,47(2):1-16. [百度学术]
ZHANG Nan, WANG Liang, Talalay Pavel, et al. Advances in research on key technology for ice drilling in the polar regions [J]. Exploration Engineering (Rock Soil Drilling and Tunneling), 2020,47(2):1-16 [百度学术]
Johnsen S J, Hansen S B, Sheldon S G, et al. The Hans Tausen drill: Design, performance, further developments and some lessons learned[J]. Annals of Glaciology, 2007,47:89. [百度学术]
Johnson J A, Shturmakov A J, Kuhl T W, et al. Next generation of an intermediate depth drill[J]. Annals of Glaciology, 2014,55(68):27-33. [百度学术]
Talalay P, Hu Z Y, Xu H W, et al. Environmental considerations of low‑temperature drilling fluids[J]. Annals of Glaciology, 2014,55(65):31-40. [百度学术]
孙金声,王宗轮,刘敬平,等.南极地区低温钻井液研究进展与发展方向[J].石油勘探与开发,2022,49(5):1005-1011. [百度学术]
SUN Jinsheng, WANG Zonglun, LIU Jingping, et al. Research progress and development direction of low‑temperature drilling fluid for Antarctic region[J]. Petroleum Exploration and Development, 2022, 49(5): 1005-1011. [百度学术]
Motoyama H. The second deep ice coring project at Dome Fuji, Antarctica[J]. Scientific Drilling, 2007,5:41-43. [百度学术]
Dahl‑Jensen D, Gundestrup N S, Miller H, et al. The NorthGRIP deep drilling programme[J]. Annals of Glaciology, 2002,35:1-4. [百度学术]
Gundestrup N S, Hansen B L. Borehole survey at dye‑3, South Greenland[J]. Journal of Glaciology, 1984,30(106):282-288. [百度学术]
Vinther B M, Clausen H B, Johnsen S J, et al. A synchronized dating of three Greenland ice cores throughout the Holocene[J]. Journal of Geophysical Research, 2006,111:D13102. [百度学术]
Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250‑kyr ice‑core record[J]. Nature, 1993,364(6434):218-220. [百度学术]
Dmembers N C. Eemian interglacial reconstructed from a Greenland folded ice core[J]. Nature, 2013,493(7433):489-494. [百度学术]
University of Copenhagen[EB/OL]. https://eastgrip.nbi.ku.dk/. [百度学术]
Erhardt T, Jensen C M, Adolphi F, et al. High‑resolution aerosol data from the top 3.8 kyr of the East Greenland Ice Coring Project (EGRIP) ice core[J]. Earth System Science Data, 2023,15(11):5079-5091. [百度学术]
Stoll N, Hoerhold M, Erhardt T, et al. Microstructure, micro‑inclusions, and mineralogy along the EGRIP (East Greenland Ice Core Project) ice core—Part 2: Implications for palaeo‑mineralogy[J]. The Cryoshere, 2022,16(2):667-688. [百度学术]
Gow A J. Bubbles and bubble pressures in Antarctic glacier ice[J]. Journal of Glaciology, 1968,7(50):167-182. [百度学术]
Alley R B, Meese D A, Shuman C A, et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event[J]. Nature, 1993,362(6420):527-529. [百度学术]
Fudge T J, Steig E J, Markle B R, et al. Onset of deglacial warming in West Antarctica driven by local orbital forcing[J]. Nature, 2013,500(7463):440-444. [百度学术]
Slawny K R, Johnson J A, Mortensen N B, et al. Production drilling at WAIS Divide[J]. Annals of Glaciology, 2014,55(68):147-155. [百度学术]
Souney J M, Twickler M S, Aydin M, et al. Core handling, transportation and processing for the South Pole ice core (SPICEcore) project [J]. Annals of Glaciology, 2021,62(84):118-130. [百度学术]
Parrenin F, Barnola J M, Beer J, et al. The EDC3 chronology for the EPICA Dome C ice core[J]. Climate of the Past, 2007,3(3):485-497. [百度学术]
Severi M, Becagli S, Castellano E, et al. Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching[J]. Climate of the Past, 2007,3(3):367-374. [百度学术]
Ueltzhoeffer K J, Bendel V, Freitag J, et al. Distribution of air bubbles in the EDML and EDC (Antarctica) ice cores, using a new method of automatic image analysis[J]. Journal of Glaciology, 2010,56(196):339-348. [百度学术]
Vasiliev N I, Talalay P G, Vostok Deep Ice Core Drilling Parties. Twenty years of drilling the deepest hole in ice[J]. Scientific Drilling, 2011,11:41-45. [百度学术]
Jouzel J. A brief history of ice core science over the last 50 yr[J]. Climate of the Past, 2013,9(6):2525-2547. [百度学术]
Fujii Y, Azuma N, Tanaka Y, et al. Deep ice core drilling to 2503 m depth at Dome Fuji, Antarctica[J]. Memoirs of National Institute of Polar Research, 2002,56:103-116. [百度学术]
Stenni B, Buiron D, Frezzotti M, et al. Expression of the bipolar see‑saw in Antarctic climate records during the last deglaciation[J]. Nature Geoscience, 2011,4(1):46-49. [百度学术]
Buiron D, Chappellaz J, Stenni B, et al. TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica[J]. Climate of the Past, 2011,7(1):1-16. [百度学术]
TALDICE[EB/OL]. https://www.taldice.org/. [百度学术]
Zhang N, An C, Fan X, et al. Chinese first deep ice‑core drilling project DK-1 at Dome A, Antarctica (2011-2013): Progress and performance[J]. Annals of Glaciology, 2014,55(68):88-98. [百度学术]
Xiao C D, Li Y S, Hou S G, et al. Preliminary evidence indicating Dome A (Antarctica) satisfying preconditions for drilling the oldest ice core[J]. Chinese Science Bulletin, 2008,53(1):102-106. [百度学术]
Sun B, Moore J C, Zwinger T, et al. How old is the ice beneath Dome A, Antarctica?[J]. The Cryosphere, 2014,8(3):1121-1128. [百度学术]
Hu Z Y, Shi G T, Talalay P, et al. Deep ice‑core drilling to 800m at Dome A in East Antarctica[J]. Annals of Glaciology, 2021,62(85):293-304. [百度学术]
Parrenin F, Cavitte M G P, Blankenship D D, et al. Is there 1.5‑million‑year‑old ice near Dome C, Antarctica?[J]. The Cryosphere, 2017,11(6):2427-2437. [百度学术]
Passalacqua O, Cavitte M, Gagliardini O, et al. Brief communication: Candidate sites of 1.5 Myr old ice 37 km southwest of the Dome C summit, East Antarctica[J]. The Cryosphere, 2018,12(6):2167-2174. [百度学术]
Beyond EPICA oldest ice[EB/OL]. https://www.beyondepica.eu/en/. [百度学术]
Long C A, Hodgson‑Johnston I, Nielsen H E F. The Australian ice core programme: History, context, and bibliometric analysis[J]. The Polar Journal, 2024,14(1):247-269. [百度学术]
Million year ice core[EB/OL]. https://www.antarctica.gov.au/science/climate-processes-and-change/antarctic-palaeoclimate. [百度学术]
Obase T, Abe‑Ouchi A, Saito F, et al. A one‑dimensional temperature and age modeling study for selecting the drill site of the oldest ice core near Dome Fuji, Antarctica[J]. The Cryosphere, 2023,17(6):2543-2562. [百度学术]
Kawamura K, Oyabu I. Two decades of deep ice cores from Antarctica[J]. Nature, 2024,630(8018):825-827. [百度学术]
Fudge T J, Hills B H, Horlings A N, et al. A site for deep ice coring at West Hercules Dome: Results from ground‑based geophysics and modeling[J]. Journal of Glaciology, 2023,69(275):538-550. [百度学术]
Hercules dome ice core[EB/OL]. https://www.herculesdome.org/. [百度学术]
Karlsson N B, Binder T, Eagles G, et al. Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”[J]. The Cryosphere, 2018,12(7):2413-2424. [百度学术]
Dome Fuji Deep Ice Coring Project 3[EB/OL]. http://domefuji3.org/. [百度学术]
FORO 3000 drill[EB/OL]. https://icedrill.org/equipment/foro-3000-drill. [百度学术]
Ekaykin A A, Bolshunov A, Lipenkov V Y, et al. First glaciological investigations at Ridge B, central East Antarctica[J]. Antarctic Science, 2021,33(4):418-427. [百度学术]
Talalay P, Li X C, Zhang N, et al. Antarctic subglacial drill rig. Part II: Ice and bedrock electromechanical drill (IBED)[J]. Annals of Glaciology, 2021,62(84):12-22. [百度学术]
Talalay P, Sun Y H, Fan X P, et al. Antarctic subglacial drilling rig: Part I. General concept and drilling shelter structure[J]. Annals of Glaciology, 2021,62(84):1-11. [百度学术]
Yan Y Z, Bender M L, Brook E J, et al. Two‑million‑year‑old snapshots of atmospheric gases from Antarctic ice[J]. Nature, 2019,574(7780):663-666. [百度学术]
Kuhl T W, Johnson J A, Shturmakov A J, et al. A new large‑diameter ice‑core drill: The Blue Ice Drill[J]. Annals of Glaciology, 2014,55(68):1-6. [百度学术]
Center for oldest ice exploration[EB/OL]. https://coldex.org/. [百度学术]
高新生,朱国才,任贾文,等.我国轻型高山冰芯机械钻机的发展和应用[J].冰川冻土,2012,34(6):1364-1370. [百度学术]
GAO Xinsheng, ZHU Guocai, REN Jiawen, et al. Development and application of light‑weight core drills for ice coring of glaciers in high mountains in China [J]. Journal of Glaciology and Geocryology, 2012,34(6):1364-1370. [百度学术]
Goodge J W, Severinghaus J P. Rapid access ice drill: A new tool for exploration of the deep Antarctic ice sheets and subglacial geology[J]. Journal of Glaciology, 2016,62(236):1049-1064. [百度学术]
Alemany O, Chappellaz J, Triest J, et al. The SUBGLACIOR drilling probe: Concept and design[J]. Annals of Glaciology, 2014,55(68):233-242. [百度学术]
Rix J, Mulvaney R, Hong J, et al. Development of the British Antarctic survey rapid access isotope drill[J]. Journal of Glaciology, 2019,65(250):288-298. [百度学术]
Schwander J, Marending S, Stocker T F, et al. RADIX: A minimal‑resources rapid‑access drilling system[J]. Annals of Glaciology, 2014,55(68):34-38. [百度学术]
Gibson C J, Johnson J A, Shturmakov A J, et al. Replicate ice‑coring system architecture : Mechanical design[J]. Annals of Glaciology, 2014,55(68):165-172. [百度学术]
曹品鲁,陈宝义,刘春朋,等.极地深冰心钻探“暖冰”层钻进技术难点及对策[J].探矿工程(岩土钻掘工程),2014,41(9):58-62. [百度学术]
CAO Pinlu, CHEN Baoyi, LIU Chunpeng, et al. Analysis of the technology difficulties and countermeasures in warm ice deep core drilling [J]. Exploration Engineering (Rock Soil Drilling and Tunneling), 2014, 41(9):58-62. [百度学术]