摘要
针对海域天然气水合物钻井过程中由于储层水合物分解引起的井壁失稳难题,以2-丙烯酰胺基-2-甲基丙磺酸、二甲基二烯丙基氯化铵和二甲氧基甲基乙烯基硅烷改性纤维素为原料,制备了一种具有天然气水合物分解抑制性和降滤失性的双效处理剂。通过红外光谱表征了产物的分子结构,热重分析显示产物开始分解的温度约290 ℃,具有良好的热稳定性。水合物分解评价实验表明,1%双效处理剂作用下水合物的完全分解时间延长约1倍,水合物分解量降低了19.8%,具有良好的水合物分解抑制性能。在淡水基浆和5 wt% NaCl盐水基浆中的滤失量分别为6.8和8 mL,对于水合物储层具有良好的降滤失性。低温时淡水基浆滤失量为6.5 ml,表明双效处理剂具有良好低温流变性。本文为天然气水合物高性能钻井液的构建提供了重要支撑。
天然气水合物蕴藏量巨大,是未来重要的潜在战略替代能源,其中超过90%赋存于海
实验仪器:电动六速旋转粘度计为青岛同春石油仪器有限公司的ZNN-D68型,热重分析仪为美国TA仪器的TGA550型,扫描电镜为FEI的Nova NanoSEM450型,恒温恒湿箱为上海一恒科技有限公司的BC1300型,红外光谱仪为日本岛津的IRTRacer-100型,纳米粒度电位仪为英国马尔文公司的Zetasizer Nano Z型。
实验药品:二甲氧基甲基乙烯基硅烷,分析纯,Aladdin;纤维素,分析纯,Aladdin;2-丙烯酰胺基-2-甲基丙磺酸(AMPS),分析纯,安耐吉化学;二甲基二烯丙基氯化铵(DMDAAC),化学纯,Aladdin;过硫酸铵,分析纯,沪试;亚硫酸氢钠,分析纯,沪试;黄原胶,USP,Aladdin。
称取少量纤维素样品在水溶液中均匀分散,将二甲氧基甲基乙烯基硅烷与蒸馏水混合充分水解,制备1 wt%的偶联剂溶液;取成比例偶联剂溶液添加到纤维素混合液,加入乙酸调节pH值;取干净的三口烧瓶固定于油浴锅中,然后加入混合液,确定最佳转速,搅拌使其均匀分散;设置反应温度,开始加热,反应1 h之后得到改性纤维素混合液;将混合物多次洗涤,并以9000 r/min离心10 min,干燥、研磨得目标产物。随后加入一定量蒸馏水至烧杯中;向烧杯依次加入改性纤维素、AMPS和DMDAAC,搅拌均匀后用NaOH调节pH值;取干净的四口烧瓶固定于水浴锅中,然后加入混合液,充氮气保护,预热至一定温度后间隔相同时间依次加入0.3 wt%引发剂(过硫酸铵和亚硫酸氢钠);设置反应温度为50 ℃,开始加热,反应5 h后,取出粗产物;用乙醇多次洗涤、提纯,烘干产品至恒重,粉碎产物得到粉末状聚合物即为目标产品(见

图1 双效处理剂的制备
Fig.1 Synthesis of CAD block copolymers
采用IRTRacer-100型红外光谱仪对合成样品进行红外光谱实验;使用美国TGA550型热重分析仪测定样品的热稳定性。制备基浆泥饼和1 wt% CAD泥浆泥饼,经过镀金处理后使用Nova NanoSEM450型扫描电镜观察泥饼表面微观形貌;配置基浆和浓度依次为0.5 wt%、1 wt%、1.5 wt% CAD的泥浆,使用纳米粒度电位仪测试处理剂不同加量对基浆稳定性的影响。按照GB/T16783-2014测定钻井液的流变及滤失性能。
双效处理剂CAD的红外光谱如

图2 双效处理剂CAD的红外光谱
Fig.2 Infrared spectroscopy of CAD
双效处理剂CAD的热失重分析图如

图3 双效处理剂CAD的热稳定性能分析
Fig.3 Analysis of thermal stability performance of CAD
双效处理剂CAD的滤失量随浓度变化如

图4 双效处理剂CAD的滤失量随浓度变化
Fig.4 The filtration of CAD varies with concentration
样品在基浆和盐水基浆中常规和低温老化的流变和滤失性能结果如
盐含量/wt% | CAD加量/wt% | 温度/ ℃ | AV/(mPa·s) | PV/(mPa·s) | YP/(mPa·s) | FL/ml |
---|---|---|---|---|---|---|
0 | 0 | 25 | 6.25 | 4.00 | 2.25 | 22.00 |
4 | 9.50 | 6.50 | 3.00 | 15.00 | ||
1 | 25 | 22.00 | 17.00 | 5.00 | 6.80 | |
4 | 38.75 | 14.50 | 10.50 | 6.40 | ||
5 | 0 | 25 | 6.50 | 2.00 | 4.50 | 53.22 |
4 | 9.75 | 4.50 | 5.25 | 36.93 | ||
1 | 25 | 10.00 | 7.50 | 2.50 | 6.62 | |
4 | 15.00 | 12.50 | 2.50 | 7.40 | ||
10 | 0 | 25 | 8.75 | 3.00 | 5.75 | 70.78 |
4 | 10.00 | 3.50 | 6.50 | 60.04 | ||
1 | 25 | 12.25 | 9.50 | 2.75 | 6.26 | |
4 | 8.75 | 8.00 | 0.75 | 7.80 |
注: 低温老化条件为0 ℃,老化时间2 h,取出后10000 r/min高速搅拌60 s。
(1)Zeta电位:为了研究处理剂不同加量对基浆稳定性的影响,测定不同加量产品下钻井液的Zeta电位,结果如

图5 Zeta电位与CAD浓度的关系
Fig.5 Zeta potential vs CAD concentration
(2)扫描电镜:对基浆和加量1 wt%处理剂的泥浆滤饼进行镀金处理,通过扫描电镜观察泥饼微观形貌,如

图6 不同泥浆滤饼扫描电镜图
Fig.6 Scanning electron microscopy of
different mud cakes
4~30 ℃的流变实验结果如图

图7 表观粘度随温度变化
Fig.7 Apparent viscosity varies with temperature

图8 塑性粘度随温度变化
Fig.8 Plastic viscosity varies with temperature
依据水合物分解抑制实验中空白组和实验组分解过程系统压力、系统温度与时间数据如

图9 水合物分解过程的温度压力曲线
Fig.9 Temperature and pressure curve of hydrate decomposition process

图10 天然气水合物分解甲烷气体释放速率
Fig.10 Release rate by methane gas decomposition of natural gas hydrate
以二甲氧基二甲基乙烯基硅烷为偶联剂,采用接枝共聚反应合成改性纤维素。以改性纤维素、AMPS和DMDAAC为单体,亚硫酸氢钠和过硫酸铵为引发剂,采用自由基聚合反应合成一种兼备分解抑制性的降滤失剂CAD。
(1)双效处理剂的合成温度为50 ℃,反应时间为5 h,引发剂加量为0.3 wt%。红外光谱和热重分析结果显示合成产物与目标产物一致,且分解温度290 ℃,具有良好的热稳定性。
(2)当基浆中加入1% CAD时,钻井液滤失量降低了70%。并且在高盐浓度下,钻井液滤失量显著降低,具有良好的降滤失性以及抗盐能力。
(3)双效处理剂具有良好的低温流变性能,表观粘度之比为1.40,塑性粘度之比为1.38。
(4)水合物分解抑制对比实验显示双效处理剂作用下,6 h水合物分解量降低了19.8%。
(5)Zeta电位和扫描电镜显示1%的双效处理剂作用下可形成以聚合物分子-粘土颗粒相互连接为骨架的稳定空间网架结构。
参考文献(References)
孙金声,程远方,秦绪文,等.南海天然气水合物钻采机理与调控研究进展[J].中国科学基金,2021;35(6):940-51. [百度学术]
SUN Jinsheng, CHENG Yuanfang, QIN Xuwen, et al. Research progress on natural gas hydrate drilling & production in the South China Sea[J]. Bulletin of National Natural Science Foundation of China, 2021;35(6):940-51. [百度学术]
Yin FL, Gao YH, Chen Y, et al. Numerical investigation on the long‑term production behavior of horizontal well at the gas hydrate production site in South China Sea[J]. Applied Energy, 2022,311:118603. [百度学术]
Yang SX, Zhang HQ, Wu NY, et al. High concentrations of hydrate in disseminated forms found in very fine‑grained sediments of Shenhu area, north slope of South China Sea[C]//6th International Conference on Gas Hydrates. Vancouver, British Columbia, 2008. [百度学术]
刘协鲁,阮海龙,赵义,等.海域天然气水合物保温保压取样钻具研究与应用进展[J].钻探工程,2021,48(7):33-39. [百度学术]
LIU Xielu, RUAN Hailong, ZHAO Yi, et al. Progress in research and application of the pressure-temperature core sampler for marine natural gas hydrate[J]. Drilling Engineering, 2021,48(7):33-39.. [百度学术]
孙金声,廖波,王金堂,等.分子模拟技术在天然气水合物相变机理方面的研究进展及应用[J].中南大学学报(自然科学版)2022,53(3):757-771. [百度学术]
SUN Jinsheng, LIAO Bo, WANG Jintang, et al. Research progress and application of molecular simulation technology in phase transition mechanism of natural gas hydrate[J]. Journal of Central South University (Science and Technology), 2022,53(3):757-771. [百度学术]
Li YL, Wu NY, Ning FL, et al. Hydrate‑induced clogging of sand‑control screen and its implication on hydrate production operation[J]. Energy, 2020,206:118030. [百度学术]
王志刚,李小洋,张永彬,等.海域非成岩天然气水合物储层改造方法分析[J].钻探工程,2021,48(6):32-38. [百度学术]
WANG Zhigang, LI Xiaoyang, ZHANG Yongbin, et al. Analysis of the stimulation methods for marine non‑diagenetic natural gas hydrate reservoirs[J]. Drilling Engineering, 2021,48(6):32-38. [百度学术]
Liao B, Wang J, Han X, et al. Microscopic molecular insights into clathrate methane hydrates dissociation in a flowing system[J]. Chemical Engineering Journal, 2022,430:133098. [百度学术]
Li QC, Cheng YF, Ansari U, et al. Experimental investigation on hydrate dissociation in near‑wellbore region caused by invasion of drilling fluid: Ultrasonic measurement and analysis[J]. Environmental Science and Pollution Research, 2022,29(24):36920-36937. [百度学术]
侯岳,刘春生,刘聃,等.海域天然气水合物浅软地层水平井钻井液技术[J].钻探工程,2022,49(2):16-21. [百度学术]
HOU Yue, LIU Chunsheng, LIU Dan, et al. Drilling fluid technology for natural gas hydrate horizontal wells in marine shallow soft formation[J]. Drilling Engineering, 2022,49(2):16-21. [百度学术]
Ma X, Jiang D, Sun Y, et al. Experimental study on hydraulic fracturing behavior of frozen clayey silt and hydrate-bearing clayey silt[J]. Fuel, 2022,322:124366. [百度学术]
Li B, Ma X, Zhang G, et al. Enhancement of gas production from natural gas hydrate reservoir by reservoir stimulation with the stratification split grouting foam mortar method[J]. Journal of Natural Gas Science and Engineering, 2020,81:103473. [百度学术]
Suryanarayana PV, Bogdanovic M, Thavaras PK, et al. Assessing the impact of shallow gas hydrate dissociation on structural integrity in deepwater wells[C]//International Petroleum Technology Conference. Virtual, 2021. [百度学术]
Wu NY, Li YL, Wan YZ, et al. Prospect of marine natural gas hydrate stimulation theory and technology system[J]. Natural Gas Industry B, 2021,8(2):173-187. [百度学术]
Maiti M, Ranjan R, Chaturvedi E, et al. Formulation and characterization of water‑based drilling fluids for gas hydrate reservoirs with efficient inhibition properties[J]. Journal of Dispersion Science and Technology, 2021,42(3):338-351. [百度学术]
史浩贤,谢文卫,于彦江,等.复合解堵技术在天然气水合物开发中的应用可行性分析[J].钻探工程,2022,49(1):5-15. [百度学术]
SHI Haoxian, XIE Wenwei, YU Yanjiang, et al. Application feasibility of composite plugging removal technology in the development of natural gas hydrate[J]. Drilling Engineering, 2022,49(1):5-15. [百度学术]
付帆,熊正强,陶士先,等.天然气水合物钻井液研究进展[J].探矿工程(岩土钻掘工程),2018,45(10):71-76. [百度学术]
FU Fan, XIONG Zhengqiang, TAO Shixian, et al. Research Progress in Drilling Fluid for Natural Gas Hydrate[J]. Exploration Engineering (Rock & Soil Drilling and Tunnling), 2018,45(10):71-76. [百度学术]
Liao B, Wang J, Sun J, et al. Microscopic insights into synergism effect of different hydrate inhibitors on methane hydrate formation: Experiments and Molecular Dynamics Simulations[J]. Fuel, 2023,340:127488. [百度学术]
Cao J, Meng L, Yang Y, et al. Novel acrylamide/2-acrylamide-2-methylpropanesulfonic acid/4-vinylpyridine terpolymer as an anti‑calcium contamination fluid-loss additive for water‑based drilling fluids[J]. Energy & Fuels, 2017,31(11):11963-11970. [百度学术]
Cheng C, Wang F, Zhang J, et al. Cyclic formation stability of 1,1,1,2-tetrafluoroethane hydrate in different SDS solution systems and dissociation characteristics using thermal stimulation combined with depressurization[J]. ACS Omega, 2019,4(7):11397-11407. [百度学术]
Wang J, Sun J, Wang R, et al. Mechanisms of synergistic inhibition of hydrophilic amino acids with kinetic inhibitors on hydrate formation[J]. Fuel, 2022,321:124012. [百度学术]
Sharifi H, Ripmeester J, Walker VK, et al. Kinetic inhibition of natural gas hydrates in saline solutions and heptane[J]. Fuel, 2014,117:109-117. [百度学术]
Mi FY, He ZJ, Jiang GS, et al. Molecular insights into the effects of lignin on methane hydrate formation in clay nanopores[J]. Energy, 2023,276:127496. [百度学术]
Zhao X, Qiu Z, Huang W. Characterization of kinetics of hydrate formation in the presence of kinetic hydrate inhibitors during deepwater drilling[J]. Journal of Natural Gas Science and Engineering, 2015,22:270-278. [百度学术]
Mi F, He Z, Jiang G, et al. Effects of marine environments on methane hydrate formation in clay nanopores: A molecular dynamics study[J]. Science of The Total Environment, 2022,852:158454. [百度学术]
He ZJ, Mi FY, Ning FL, et al. Methane hydrate formation in the salty water confined in clay nanopores: A molecular simulation study[J]. ACS Sustainable Chemistry & Engineering, 2022,10(18):6128-6140. [百度学术]
Liao B, Wang J, Li MC, et al. Microscopic molecular and experimental insights into multi‑stage inhibition mechanisms of alkylated hydrate inhibitor[J]. Energy, 2023,279:128045. [百度学术]