摘要
水力压裂技术是实现低渗油气及地热储层的高效开发利用的关键技术手段,为了研究干热岩型地热储层水力压裂过程中水力裂缝的扩展规律,本文使用粘结单元法(Cohesive Zone Method, CZM)研究了压裂液排量、压裂液粘度以及水平地应力差对水力裂缝形态的影响,并利用正交试验对上述压裂工艺参数的组合进行优化。结果表明:压裂液排量对水力裂缝的长度具有重要影响,而压裂液的粘度对水力裂缝的宽度具有显著影响;压裂液的排量和粘度的增加,促进了分支裂缝的萌生和扩展;水平地应力差为1 MPa时,本文所建立的模型在压裂液排量和粘度分别取0.004
随着全球经济快速发展,石油、天然气等能源的对外依存度逐年增加,能源危机已成为世界各国需要关注的迫切问题之
地热能因其分布广泛、低碳环保和可持续开采等特点,现已成为世界各国能源领域学者重点关注的新能源领域。与其他清洁能源如风能、太阳能相比,季节更替、气候变化以及昼夜循环等干扰因素对地热能提取的影响较小,其发电效率可达73
干热岩赋存在地下3000 m以深,其内部没有或仅含有极少量热蒸汽的高温低渗透性岩体(温度>180℃
目前,EGS工程仍处于示范性工程的预研和可行性研究阶段,地质勘查技术、深部钻完井技术、储层改造技术和高效热能提取技术是EGS实现商业化开采需要突破的关键技术问题。其中,提高干热岩型热储渗透特性的储层改造技术是亟待关键突破的重点研究领域。
水力压裂是储层改造技术的核心技术手段,各国EGS示范工程中,水力压裂技术也在不断的创新和发展。EGS建储过程中的主要压裂形式包括沿用了传统石油行业的支撑剂型压裂和低粘度压裂流体形成以剪切压裂为主的水力压裂方
数值模拟研究因其可重复性高,成本较低等特点逐渐被学者关注,可用于水力压裂研究的数值模拟方法主要包括位移不连续法、离散元法、扩展有限元法和有限元法。(1)位移不连续法:Chuprakov
与上述模拟方法相比,本文采用有限元法框架内的粘结单元法(Cohesive Zone Method, CZM)对水力裂缝展开研究。该方法具有以下3方面优势:(1)适应本构模型复杂的岩石模型;(2)可模拟裂缝间的交汇行为;(3)能够水力压裂过程中岩石基质与裂缝系统之间的流-固耦合过
本文基于自主编写的网格节点分离程序,在压裂模型内部嵌入零厚度的粘结单元,进而实现对不同压裂液参数和地应力差条件下水力裂缝起裂与扩展行为的模拟,以期获得不同压裂液参数和水平地应力差对压裂效果的影响,并最终得出适合于本文所建立模型的最佳压裂参数组合。同时,综合考虑压裂过程中主裂缝、分支裂缝的形成与扩展对模型内部缝网复杂性的影响,选取累计裂缝长度和最大裂缝宽度作为正交试验结果的评价指标,相比仅通过裂缝长度和宽度来定性描述压裂效果更为合理。
建立模型的假设条件如下:
(1)所选储层岩石为非均质分布,能够服从Weibull分布;
(2)储层岩石内部为各向同性,岩体为弹性介质,服从线弹性力学规律;
(3)岩体满足Biot固结理论和有效应力原理;
(4)岩体为单相饱和介质;
(5)水为液态,不考虑水的相变;
(6)岩体力学行为用连续介质损伤力学理论描述,满足最大拉应力准则和Mohr-Coulomb准则;
(7)忽略在压裂过程中压裂液与储层岩石发生的化学或物理作用而导致的岩石力学物性产生异变。
粘合单元法单元的损伤开始出现前需要满足的应力与应变关系如下述,单元承受的牵引应力矢量t的表达式如下所示:
(1) |
式中:tn——单元的法向方向的牵引力;ts、tt——分别为两个切线方向的牵引力;、、分别为牵引分离刚度;——CZM单元的初始厚度;——粘结单元的法向方向的弹性模量;、——分别为粘结单元的两个切线方向的弹性模量;——与牵引力相对应的法向方向的分离应变;、——分别为相对应的两个切线方向的分离应变;——法向方向的分离位移;——分别为两个切线方向的分离位移。
基于粘弹塑性损伤模型CZM对材料的损伤开裂行为进行模拟时,第一必须深刻了解粘结单元的几何厚度和本构厚度,因为在对本构方程中刚度和应变计算时,其结果与本构厚度的取值有直接关系。第二为了保持计算过程简便,建立的此模型中本构厚度的取值默认为1,这样可以使粘结单元的应变数值与对应方向的位移保持一致。
为了达到使模型单元内部流体保持连续流动的目的,CZM的孔压-渗流单元将损伤区内的流体流动分为法向流动和切向流动,CZM孔压-渗流单元内的流体流动进一步分为法向流动和切向流动,如

图1 CZM孔压-渗流单元内的流体流动示意
Fig.1 Schematic diagram of fluid flow in the pore pressure‑permeability unit in CZM
根据达西渗流定律,CZM裂隙单元内的流体在单元表面的法向流动与其接触介质单元的体积速率有直接关系,所建模型的周围岩石基质在现实压裂过程中的滤失行为可用它来进行模拟。
流体在单元上表面和下表面法向流动的计算公式为:
(2) |
式中:——CZM裂缝单元内压裂流体沿着上单元表面的体积流速,
假设单元内部压裂流体为不可压缩的牛顿流体,基于Poiseuille法则,单元内压裂流体的切向流动服从润滑方程:
(3) |
式中:——通过CZM裂隙单元横截面的切向体积流量,
假设CZM裂隙单元内流体符合两块平行板之间的层流流动的模式进行流动,可对单元内的压降梯度进行计算:
(4) |
对上式进行积分可得CZM单元内压裂流体的压降方程:
(5) |
式中:——压裂流体流入CZM裂隙单元时的流体压力,MPa;——压裂流体沿切向方向穿过CZM裂隙单元后的流体压力,MPa;——CZM裂隙单元切向方向的单元长度,m;——裂缝的高度,m;——裂隙单元随压裂时间而产生的不断变化的裂缝面的张开位移,m;——裂缝内的流体流量,
综上所述,基于CZM建立的如上模型可以实现水力压裂过程中缝内流体与周围岩石介质的多场耦合过程的模拟。
本文利用自主编写的网格节点分离程序,采用ABAQUS软件在有限元计算框架内提供的基于粘弹塑性损伤模型的CZM对干热岩水力压裂裂缝的起裂与扩展行为进行模拟。
所建立的干热岩水力压裂数值模型如

图2 干热岩水力压裂数值模型
Fig.2 Numerical modeling of hydraulic fracturing in hot dry rock
国内外学者针对花岗岩力学参数进行了大量的室内与原位试
材料 | 参数及单位 | 取值 |
---|---|---|
花岗岩基质 | 弹性模量/GPa | 40 |
泊松比 | 0.23 | |
渗透率/ |
1.51 | |
孔隙压力/MPa | 0 | |
孔隙比 | 0.05 | |
CZM单元 | 弹性模量/GPa | 40 |
法向抗拉强度tn/MPa | 10 | |
破裂面I方向的抗剪强度ts/MPa | 20 | |
破裂面Ⅱ方向的抗剪强度tt/MPa | 20 | |
原位地应力 | 垂向地应力σv/MPa | 10 |
最大水平地力σH/MPa | 9 | |
最小水平地力σh/MPa | 4 | |
流体性质 | 压裂液粘度/(mPa·s) | 1/60/150 |
压裂流体比重/(N· | 9800/11760/14700 |
近年来,许多研究人员基于正交试验的原理对试验中的各影响因素做分析,能够对试验方案进行优化而且有效减少试验周期和成本,提高科研效率。
在进行正交试验前,需要根据试验的研究目标选择合适的试验因素和结果评价指标。本文正交试验将压裂过程中的压裂液排量、压裂液粘度以及水平地应力差作为试验因素,并对上述试验因素在水力压裂裂缝扩展行为和缝网形态的影响进行研究。
考虑到水力压裂过程中,模型内部除了形成主水力裂缝之外,还发育有分支裂缝,因此,为了准确评价水力压裂效果,本文选择累计水力裂缝长度和最大水力裂缝宽度作为水力压裂效果的评价指标,评价指标和模型内部的裂缝复杂性呈正相关,相应的评价指标越大表明储层改造效果越好。
本文使用极差分析法对正交试验结果进行分析,研究压裂液排量、压裂液粘度和水平地应力差对水力压裂效果的影响。试验因素水平见
因素 水平 | A | B | C |
---|---|---|---|
压裂液排量/ ( | 压裂液粘度/ (Pa·s) | 水平地应力差/MPa | |
1 | 0.001 | 0.001 | 1 |
2 | 0.002 | 0.060 | 3 |
3 | 0.003 | 0.150 | 5 |
根据上述正交试验因素水平表设计正交试验,其中,基于自主编写的子程序,对模型压裂后的裂缝单元的位移信息进行自动提取和处理,进而获得正交试验中累计裂缝长度和最大裂缝宽度的值,如
因素 试验号 | A | 误差列 | B | C | 模拟方案 | 评价指标 | |
---|---|---|---|---|---|---|---|
压裂液排量/( | 压裂液粘度/Pa·s | 水平地应力差/MPa | 累计裂缝长度/m | 最大裂缝宽度/mm | |||
1 | 1 | 1 | 1 | 1 | A1B1C1 | 22.482 | 3.301 |
2 | 1 | 2 | 2 | 2 | A1B2C2 | 11.509 | 3.251 |
3 | 1 | 3 | 3 | 3 | A1B3C3 | 10.641 | 3.269 |
4 | 2 | 1 | 2 | 3 | A2B2C3 | 12.093 | 3.237 |
5 | 2 | 2 | 3 | 1 | A2B3C1 | 14.583 | 3.280 |
6 | 2 | 3 | 1 | 2 | A2B1C2 | 11.410 | 3.015 |
7 | 3 | 1 | 3 | 2 | A3B3C2 | 11.693 | 3.248 |
8 | 3 | 2 | 1 | 3 | A3B1C3 | 15.475 | 3.095 |
9 | 3 | 3 | 2 | 1 | A3B2C1 | 52.904 | 3.656 |
累计裂缝长度的极差分析结果如
A | 误差列 | B | C | |
---|---|---|---|---|
压裂液排量/( | 压裂液粘度/(Pa·s) | 水平地应力差/MPa | ||
K1 | 44.632 | 46.268 | 49.367 | 89.969 |
K2 | 38.086 | 41.567 | 76.506 | 34.612 |
K3 | 80.072 | 74.955 | 36.917 | 38.209 |
k1 | 14.877 | 15.423 | 16.456 | 29.989 |
k2 | 12.695 | 13.856 | 25.502 | 11.537 |
k3 | 26.691 | 24.985 | 12.306 | 12.736 |
极差R | 13.996 | 11.129 | 13.196 | 18.452 |
因素主次顺序 | C>A>B | |||
优选方案 | C1A3B2 |
A | B | C | ||
---|---|---|---|---|
压裂液排量/( | 误差列 | 压裂液粘度/(Pa·s) | 水平地应力差/MPa | |
K1 | 9.821 | 9.786 | 9.411 | 10.237 |
K2 | 9.532 | 9.626 | 10.144 | 9.514 |
K3 | 9.999 | 9.940 | 9.797 | 9.601 |
k1 | 3.274 | 3.262 | 3.137 | 3.412 |
k2 | 3.177 | 3.209 | 3.381 | 3.171 |
k3 | 3.333 | 3.313 | 3.266 | 3.200 |
极差R | 0.156 | 0.104 | 0.244 | 0.241 |
因素主次顺序 | B>C>A | |||
优选方案 | B2C1A3 |
表中Ki为正交试验方案中各试验因素所对应的水平为i的结果之和。例如,
表中=,表示所得试验结果的算术平均值,表示正交试验各试验因素水平的出现的次数,因此,
为极差,表中任何一列上的极差。因此,
基于正交试验的极差分析法原理,正交试验因素水平的变化对本次评价指标的影响与计算所得的极差呈正相关。因此通过表中计算得出的极差大小对各试验因素的影响程度进行排序并确定初选方案。
本文选取累计裂缝长度和最大裂缝宽度作为正交试验的评价指标,因此,应该选择各试验因素的水平值使得各评价指标的对应的k1、k2、k3取得最大的值。
上述通过正交试验获得的C1A3B2仅是
基于已获得的初步优化压裂参数C1A3B2,在保持水平地压力差为1 MPa,压裂液粘度为0.06 Pa·s的基础上,将压裂液排量从0.003增加至0.005

图3 不同压裂液排量条件下模拟地层内部的水力裂缝形态
Fig.3 The morphology of hydraulic fracture under different fracturing fluid flow rate within the stimulated strata
根据模型内部水力裂缝形态的分析可得,水力裂缝的最大裂缝宽度与压裂液的排量呈正相关,且随着压裂液排量的增加,模型内部逐渐出现分支裂缝。
经过对数值模拟结果的后处理可得模型内部累计裂缝长度和最大裂缝宽度在不同压裂液排量作用下的模拟结果,如
压裂液排量/ ( | 累计裂缝长度/m | 最大裂缝宽度/mm |
---|---|---|
0.003 | 22.631 | 3.196 |
0.004 | 29.005 | 3.369 |
0.005 | 20.741 | 3.329 |
根据
各排量作用下,缝内流体压力曲线见

图4 不同压裂液排量下的压裂曲线
Fig.4 Pressure curves of fracturing fluids inside hydraulic fractures at different flow rate of fracturing fluid
根据
综上所述,针对本文所建立的水力压裂模型中压裂液排量的单因素分析可得最优压裂方案组合为C1B2A0.004,即水平地压力差为1 MPa,压裂液粘度为0.06 Pa·s条件下,压裂液排量为0.004
同理,保持其他压裂参数不变的条件下,将压裂液粘度从0.05 Pa·s增加至0.08 Pa·s。不同压裂液粘度作用下模型内部的裂缝形态如

图5 不同压裂液粘度条件下模拟地层内部的
Fig.5 The morphology of hydraulic fracture under different fracturing fluid viscosity within the stimulated strata
水力裂缝形态
分析模型内部水力裂缝形态可得,随着压裂液粘度增加,模型内部水力裂缝的最大宽度和缝网的复杂性也随之增加。但是,当压裂液粘度>0.07 Pa·s后,模型内部水力裂缝的宽度出现下降的趋势。
经过对数值模拟结果的后处理可得模型内部累计裂缝长度和最大裂缝宽度在不同压裂液粘度作用下的模拟结果,如
压裂液粘度/ (Pa·s) | 累计裂缝长度/m | 最大裂缝宽度/mm |
---|---|---|
0.05 | 18.603 | 3.157 |
0.06 | 12.108 | 3.237 |
0.07 | 26.961 | 3.344 |
0.08 | 18.890 | 3.191 |
由
不同压裂液粘度作用下缝内流体压力曲线见

图6 不同压裂液粘度下的压裂曲线
Fig.6 Fracturing curves with different viscosity of fracturing fluid
根据
综上所述,针对本文所建立的水力压裂模型中压裂液排量的单因素分析可得最优压裂方案组合为C1A0.004B0.07,即水平地压力差为1 MPa条件下,选取压裂液排量和粘度分别取0.004
本文利用ABAQUS软件在有限元计算框架内提供的基于粘弹塑性损伤模型的Cohesive Zone Method(CZM)对干热岩模型内部水力压裂裂缝的扩展行为进行研究,并基于正交试验的原理对压裂液排量、压裂液粘度和水平地应力差进行分析,最终得到最优压裂参数组合方案。本文得到的主要结论如下:
(1)随着压裂液排量的增加,模型内部水力裂缝的宽度和长度随之增加,其对水力裂缝长度的影响较为明显;压裂液粘度与水力裂缝的长度与宽度也呈正相关,但其对裂缝宽度的影响更为显著。此外,压裂液排量和粘度的增加均能够促进分支裂缝的产生与扩展。
(2)基于极差分析与单因素分析,最终确定该模拟地层的最终优压裂方案为C1A0.004B0.07,即水平地应力差是1 MPa条件下,压裂液排量选取0.004
(3)针对压裂液排量和粘度的单因素分析过程中,我们发现持续增加排量和粘度对累计裂缝长度和最大裂缝宽度的影响不是无限制增长的,因此,可以推断在实际压裂工况下,不能盲目依靠增加压裂液排量和粘度的方式实现对压裂改造效果的持续提升,应当充分了解和掌握待压裂地层的储层物性条件和不连续结构面的分布情况,在此基础上对压裂参数进行充分的优化设计,进而提高储层的压裂改造效果。
参考文献(References)
邹才能,陶士振,白斌,等.论非常规油气与常规油气的区别和联系[J].中国石油勘探,2015,20(1):1-16. [百度学术]
ZOU Caineng, TAO Shizhen, BAI Bin, et al. Differences and relations between unconventional and conventional oil and gas[J]. China Petroleum Exploration, 2015,20(1):1-16. [百度学术]
贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136. [百度学术]
JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. China Petroleum Exploration and Development, 2012,39(2):129-136. [百度学术]
黄维和,韩景宽,王玉生,等.我国能源安全战略与对策探讨[J].中国工程科学,2021,23(1):112-117. [百度学术]
HUANG Weihe, HAN Jingkuan, WANG Yusheng, et al. Strategies and countermeasures for ensuringenergy security in China[J]. Strategic Study of CAE, 2021,23(1):112-117. [百度学术]
李德威,王焰新.干热岩地热能研究与开发的若干重大问题[J].地球科学(中国地质大学学报),2015,40(11):1858-1869. [百度学术]
LI Dewei, WANG Yanxin. Major issues of research and development of hot dry rock geothermal energy[J]. Earth Science: Journal of China University of Geoscience, 2015,40(11):1858-1869. [百度学术]
王贵玲,杨轩,马凌,等.地热能供热技术的应用现状及发展趋势[J].华电技术,2021,43(11):15-24. [百度学术]
WANG Guiling, YANG Xuan, MA Ling, et al. Status quo and prospects of geothermal energy in heat supply[J]. Huadian Technology, 2021,43(11):15-24. [百度学术]
王文,吴纪修,施山山等.探秘“能源新星”——干热岩[J].探矿工程(岩土钻掘工程),2020,47(3):88-93. [百度学术]
WANG Wen, WU Jixiu, SHI Shanshan, et al. Probe a new energy: Hot dry rock[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(3):88-93. [百度学术]
庞忠和,罗霁,程远志,等.中国深层地热能开采的地质条件评价[J].地学前缘,2020,27(1):134. [百度学术]
PANG Zhonghe, LUO Ji, CHENG Yuanzhi, et al. Evaluation of geological conditions for development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020,27(1):134. [百度学术]
王贵玲,张薇,梁继运,等.中国地热资源潜力评价[J].地球学报,2017,38(4):448-459. [百度学术]
WANG Guiling, ZHANG Wei, LIANG Jiyun, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017,38(4):448-459. [百度学术]
王跃伟,李宽,张恒春,等.液动潜孔锤用于干热岩钻进的优化与试验[J].钻探工程,2022,49(6):36-41. [百度学术]
WANG Yuewei, LI Kuan, ZHANG Hengchun, et al. Optimization and test of hydraulic DTH hammers used in hot dry rock drilling[J]. Drilling Engineering, 2022,49(6):36-41.. [百度学术]
许天福,张延军,曾昭发,等.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45. [百度学术]
XU Tianfu, ZHANG Yanjun, ZENG Zhaofa, et al. Technological advances in enhanced geothermal systems (hot dry rock) development[J]. Science & Technology Review, 2012,30(32):42-45. [百度学术]
郭亮亮,张延军,胡忠君,等.增强型地热系统水力压裂和开采方案研究[J].工程地质学报.2015,23(s1):235-241. [百度学术]
GUO Liangliang, ZHANG Yanjun, HU Zhongjun, et al. Study of hydraulic fracturing and extraction programmes in enhanced geothermal systems[J]. 2015,23(s1):235-241. [百度学术]
Chen H.Y, Teufel L.W, Lee,R. Coupled fluid flow and geomechanics in reservoir study[C]. Proceedings of the 1995 SPE Annual Technical Conference and Exhibition,Dallas, TX, USA,1995. [百度学术]
何艳青,王鸿勋.用数值模拟方法预测压裂井的生产动态[J].石油大学学报(自然科学版),1990(5):16-25. [百度学术]
HE Yanqing, WANG Hongxun. Predicting production dynamics in fractured wells using numerical simulation methods[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1990(5):16-25. [百度学术]
闫建文,王群嶷,张士诚.低渗透油田压裂注水采油整体优化方法[J].大庆石油地质与开发,2000(5):50-52,69-70. [百度学术]
YAN Jianwen, WANG qunyi, ZHANG Shicheng. An overall optimisation method for fracturing water injection and oil recovery in low permeability oilfields[J]. Petroleum Geology & Oilfield Development in Daqing, 2000(5):50-52,69-70. [百度学术]
谭现锋,刘肖,马哲民,等.干热岩储层裂隙准确识别关键技术探讨[J].钻探工程,2023,50(2):48-57. [百度学术]
TAN Xianfeng, LIU Xiao, MA Zhemin, et al. Discussion on the key technology for fracture identification in hot dry rock reservoir[J]. Drilling Engineering, 2023,50(2):48-57. [百度学术]
蒋亚峰,田英英,李小洋,等.基于cohesive单元海域天然气水合物储层水力压裂模拟[J].钻探工程,2023,50(1):18-25. [百度学术]
JIANG Yafeng, TIAN Yingying, LI Xiaoyang, et al. Numerical simulation of hydrate reservoir hydraulic fracturing based on cohesive units[J]. Drilling Engineering, 2023,50(1):18-25. [百度学术]
ChuprakoV D.A., Akulich A.V., Siebrits E, et al. Hydraulic-fracture propagation in a naturally fractured reservoir[J]. SPE Production & Operations, 2011,26:88-97. [百度学术]
Zhao J, Chen X, Li Y, et al. Simulation of simultaneous propagation of multiple hydraulic fractures in horizontal wells[J]. Journal of Petroleum Science and Engineering, 2016,147:788-800. [百度学术]
Murad S. Abuaisha, David Eaton, Jeffrey Priest,et al. Hydro‑mechanically coupled FDEM framework to investigate near‑wellbore hydraulic fracturing in homogeneous and fractured rock formations[J]. Journal of Petroleum Science & Engineering, 2017,154:100-113. [百度学术]
Lanru, Jing, Yue Ma, et al. Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method[J]. International Journal of Rock Mechanics & Mining Sciences, 2001,38:343-355. [百度学术]
Wang X L, Shi F, Liu H, et al. Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method[J]. Journal of Natural Gas Science and Engineering, 2016,33:56-69. [百度学术]
孙可明,张树翠,李天舒.横观各向同性油气藏水力压裂裂纹扩展规律研究[J].计算力学学报,2016,33(5):767-772. [百度学术]
SUN Keming, ZHANG Shucui, LI Tianshu. Study on the law of transverse isotropic reservoir crack extension during hydraulic fracture[J]. Chinese Journal of Computational Mechanics, 2016,33(5):767-772. [百度学术]
王涛,高岳,柳占立,等.基于扩展有限元法的水力压裂大物模实验的数值模拟[J].清华大学学报(自然科学版),2014,54(10):1304-1309. [百度学术]
WANG Tao, GAO Yue, LIU Zhanli, et al. Numerical simulations of hydraulic fracturing in large objects using an extended finite element method[J]. Journal of Tsinghua University(Science and Technology), 2014,54(10):1304-1309. [百度学术]
Taleghani A D, Gonzalez M, Shojaei A. Overview of numerical models for interactions between hydraulic fractures and natural fractures: Challenges and limitations[J]. Computers & Geotechnics, 2016,71:361-368. [百度学术]
Chen Z.r., Bunger A.P., Xi Z., et al. Cohesive zone finite element-based modeling of hydraulic fractures[J]. Acta Mechanica Solida Sinica, 2009,22(5):443-452. [百度学术]
Bryant E C, Hwang J, Sharma M M. Arbitrary fracture propagation in heterogeneous poroelastic formations using a finite volume-based cohesive zone model[C]// SPE Hydraulic Fracturing Technology Conference, 2015. [百度学术]
谭现锋,张强,战启帅,等.干热岩储层高温条件下岩石力学特性研究[J].钻探工程,2023,50(4):110-117. [百度学术]
TAN Xianfeng, ZHANG Qiang, ZHAN Qishuai, et al. Study on rock mechanical properties of hot‑dry rock reservoir under high temperature[J]. Drilling Engineering, 2023,50(4):110-117. [百度学术]
谭现锋,王浩,康凤新.利津陈庄干热岩GRY1孔压裂试验研究[J].探矿工程(岩土钻掘工程),2016,43(10):230-233. [百度学术]
TAN Xianfeng, WANG Hao, KANG Fengxin. Experimental study on fracturing of GRY1 hot dry rock hole in Chenzhuang Town, Lijin County[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016,43(10):230-233. [百度学术]
刘帅,柴军瑞,薛熠,等.热冲击作用对干热岩起裂压力与裂隙扩展形态的影响[J].地球物理学进展,2023,38(4):1487-1496. [百度学术]
LIU Shuai, CHAI Junrui, XUE Yi. Influence of thermal shock on fracture initiation pressure and fracture morphology in hot dry rock hydraulic fracturing[J]. Progress in Geophysics, 2023,38(4):1487-1496. [百度学术]
郭茂生,姬长发,刘宗鑫,等.青海共和盆地干热岩热储层人工水力致裂裂缝扩展规律[J].西安科技大学学报,2023,43(3):514-522. [百度学术]
GUO Maosheng, JI Changfa, LIU Zongxin. Artificial hydraulic fracture propagation law of hot dry rock reservoir in Gonghe Basin, Qinghai Province[J]. Journal of Xi’An University of Science and Technology, 2023,43(3):514-522. [百度学术]