摘要
为准确评估边坡失稳后对滑动路径上建筑物及人们生命财产的威胁程度,本文以郴州某滑坡为例,利用物质点法,分别模拟了天然和暴雨两种工况下该边坡在开挖后的大变形破坏机制,并计算了其滑动距离,并将结果与传统有限元分析进行了对比。结果表明:(1)开挖前,该边坡在天然工况下处于基本稳定状态,在暴雨工况下处于失稳状态,而开挖后,该边坡在两种工况下都处于失稳状态;(2)开挖后该滑坡的滑动距离显著增大,在天然工况和暴雨工况下的滑动距离分别为20.11和24.12 m;(3)对比稳定性分析和大变形分析结果可知,开挖和降雨是该边坡失稳的两种主要因素,计算边坡失稳后的滑动距离可为评估其对滑动路径上建筑物的威胁程度提供理论参考,对提高边坡安全性防护有重要意义。
边坡失稳产生滑坡是一个典型的岩土工程大变形问
传统的边坡稳定性分析方法如极限平衡法和有限元法只能求解边坡破坏前的状态,不能有效处理滑坡大变形问题。物质点法在每个计算时间步都采用规则的背景网格,计算时网格不会扭曲变形,是求解与材料变形有关问题的有效方法,近年来在岩土工程领域中得到了广泛的应用。例如,王双
上述研究证明了物质点法在模拟边坡滑坡大变形方面具有较强可行性,但鲜有研究从工程实际出发,研究不同工况下的边坡大变形机制。为此,本文以湖南省郴州市某滑坡为例,基于物质点法分析该边坡开挖前后在天然工况和暴雨工况下的大变形特征,并与传统边坡稳定性分析方法作对比。
物质点法是1994年Sulsky
物质点法在每个时间步内的计算可分为3个阶段,即初始化阶段、拉格朗日计算阶段和映射阶

图1 物质点法计算流程
Fig.1 Calculation process of material point method
该滑坡位于郴州市第七完全小学北侧,地貌为剥蚀残丘地貌,总体地势北高南低,地势起伏变化较大。场地内及其周边未见有明显活动的断裂构造通过,且新构造运动不明显,处于相对稳定状态,无地表水系,周边未发现崩塌、泥石流、地下采空区等不良地质作用。地层主要为第四系坡残积成因粉质粘土,二叠系下统当冲组全风化泥页岩以及全-强风化炭质页岩,节理裂隙极发育,具体计算参数见
土层 | 粘聚力c/kPa | 内摩擦角 | 重度γ/(kN· | 弹性模量E/MPa | |||
---|---|---|---|---|---|---|---|
天然 | 饱和 | 天然 | 饱和 | 天然 | 饱和 | ||
粉质粘土 | 15.6 | 11.9 | 19.3 | 14.2 | 17.7 | 18.5 | 24 |
全风化泥页岩 | 14.6 | 11.6 | 18.9 | 14.6 | 17.0 | 18.0 | 20 |
全-强风化炭质页岩 | 12 | 10.0 | 21 | 18 | 20.4 | 21.0 | 112 |
该滑坡目前处于蠕滑变形阶段,局部已经处于变形加速阶段。地表水下渗后富集在粉质粘土内部滑动面,水量不断富集、运移,该粉质粘土的抗剪强度不断降低,形成软弱滑带,使粉质粘土层内部产生滑动。该滑坡在天然状态下处于基本稳定状态,但在长期降雨或暴雨时,地表水不断入渗滑体,造成滑体自重增加,滑面抗剪强度降低,可能发生更大的位移,严重威胁滑坡体下方居民生命、财产安全。
因此本文用有限元强度折减
利用有限元分析软件MIDAS GTS NX,分析该边坡开挖前后在天然工况和暴雨工况下的稳定性。在构建有限元模型时,根据现场实际情况考虑了不同土层材料。同时,边坡模型左右边界在水平方向进行了固定,底边界在水平方向和垂直方向进行了固定。
其中,局部计算结果通过在有限元计算过程中对边坡模型进行全局搜索滑面得到,而整体计算结果通过在搜索滑面时排除前述安全系数小的局部区域得到。开挖前边坡在天然工况下的计算得到的等效塑性应变云图见

图2 天然工况下开挖前边坡等效塑性应变云图
Fig.2 Equivalent plastic strain nephogram of slope
before excavation under natural condition
开挖前边坡在暴雨工况下的塑性应变云图见

图3 暴雨工况下开挖前边坡等效塑性应变云图
Fig.3 Equivalent plastic strain nephogram of slope
before excavation under rainstorm condition
开挖后边坡在天然工况和暴雨工况下的等效塑性应变云图见

图4 开挖暴雨工况边坡安全系数
Fig.4 Slope safety factor after excavation
under rainstorm condition
由前面的分析可知,开挖前边坡在暴雨工况下处于基本稳定状态,开挖后处于不稳定状态,因此本节使用物质点
本研究中,边坡长260 m,高87 m,物质点大小为2.0 m,共离散成6668个物质点,如

图5 边坡离散示意
Fig.5 Schematic diagram of slope dispersion
开挖前边坡在天然和暴雨工况下的滑动距离计算云图如

图6 开挖前边坡滑动距离云图
Fig.6 Contour plot of slope sliding distance
before excavation

图7 开挖后边坡滑动距离云图
Fig.7 Contour plot of slope sliding distance
after excavation
由稳定性分析可知,在天然状态下,开挖前边坡的整体稳定性系数为1.61,坡脚的局部稳定性系数为1.08,表明:边坡不会滑动,坡脚处于基本稳定状态。由大变形分析结果可知,天然状态下边坡滑动距离为1.37 m,这是因为在本次计算中视土体在空间上为各项同性,且土体是经过室内试验测试获得的,在测试前土体性质已经扰动,原有性质发生了改变,所以安全系数计算结果存在一定的误差。开挖前暴雨工况和开挖后边坡安全系数均<1,所以边坡会发生滑动。需要说明的是,由于本文进行的有限元模拟假定土体发生小变形,因此该方法不用于计算滑坡的大变形过程,而用于进行边坡的初始破坏阶段安全系数的计算。在物质点法计算过程中,物质点法可以计算土体的大变形过程,从而用于本文边坡滑动过程的模拟。
(1)开挖前边坡在天然工况下的整体安全系数为1.61,处于稳定状态,局部安全系数为1.08,处于基本稳定状态;在暴雨工况下的整体安全系数1.22,处于基本稳定状态,局部安全系数为0.80,处于失稳状态。表明:在天然工况下,该边坡处于基本稳定状态,在暴雨工况下,该边坡处于失稳状态。
(2)开挖后边坡在天然工况和暴雨工况下的安全系数分别为0.60和0.50,处于失稳状态,且失稳后的滑动距离分别为20.11和24.12 m。表明:开挖和降雨对边坡滑动距离有显著影响,使失稳后的边坡滑动距离增大。
(3)物质点法在计算边坡在不同工况下的滑动距离的同时,还可以评估边坡失稳对滑动路径上建筑物的威胁程度,对提高边坡安全性防护具有重要意义。
参考文献(References)
李底林,赵容鸣,彭府华,等.基于强度折减法的高陆边坡滑坡治理稳定性分析[J].建筑科学与工程学报,2020,37(1):120-126. [百度学术]
LI Dilin, ZHAO Rongming, PENG Fuhua, et al. Stability analysis of landslide control on high land slope based on intensity reduction method[J]. Journal of Building Science and Engineering, 2020,37(1):120-126. [百度学术]
松林,王薇,邓小虎,等.三峡库区典型滑坡地球物理实测及其意义:以万州区四方碑滑坡为例[J].地球科学,2019,44(9):3135-3146. [百度学术]
SONG Lin, WANG Wei, Deng Xiaohu, et al. Geophysical measurement of typical landslides in Three Gorges reservoir area and its significance: A case study of Sifangbei Landslide in Wanzhou District[J]. Earth Science, 2019,44(9):3135-3146. [百度学术]
Zhang S, Yang H, Wei F, et al. A model of debris flow forecast based on the water-soil coupling mechanism[J]. Journal of Earth Science, 2014,25(4):757-763. [百度学术]
刘文红,李同录,李萍.条形荷载下不排水土坡破坏模式判定及极限承载力估算[J].工程地质学报,2016,24(2):197-203. [百度学术]
LIU Wenhong, LI Tonglu, LI Ping. Determination of failure mode and ultimate bearing capacity estimation of undrained soil slope under strip load[J]. Journal of Engineering Geology, 2016,24(2):197-203. [百度学术]
苏永华,李帅,方砚兵,等.基于上限分析的边坡稳定可靠性评估[J].工程地质学报,2019,27(2):451-458. [百度学术]
SU Yonghua, LI Shuai, FANG Yanbing, et al. Stability and reliability evaluation of slope based on upper limit analysis[J]. Journal of Engineering Geology, 2019,27(2):451-458. [百度学术]
Hunter G, Fell R. Travel distance angle for “Rapid”Landslides in constructed and natural soil slopes[J]. Canadian Geotechnical Journal, 2003,40(6):1123-1141. [百度学术]
Kang C, Zhang F, Pan F, et al. Characteristics and dynamic runout analyses of 1983 Saleshan Landslide[J]. Engineering Geology, 2018,243:181-195. [百度学术]
Yin Y, Li B, Wang W, et al. Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering Geology, 2016,2(2):230-249. [百度学术]
孙玉进,宋二祥.“12·20”深圳滑坡动态模拟[J].岩土工程学报,2018,40(3):441-448. [百度学术]
SUN Yujin, SONG Erxiang. “12·20” Shenzhen landslide dynamic simulation[J]. Chinese Journal of Geotechnical Engineering, 2018,40(3):441-448. [百度学术]
Cleary P W, Campbell C S. Self‑lubrication for long runout landslides: examination by computer simulation[J]. Journal of Geophysical Research: Earth Surface, 1993,98(B12):21911-21924. [百度学术]
Johnson, Brondon C, Campbell, et al. The reduction of friction in long runout landslides as an emergent phenomenon[J]. Journal of Geophysical Research: Earth Surface, 2016,121(5):881-889. [百度学术]
Yang C M, Yu W L, Dong J J, et al. Initiation, movement, and run‑out of the Giant Tsaoling Landslide—What can we learn from a smple rigid block model and a velocity‑displacement dependent friction law?[J]. Engineering Geology, 2014,182:158-181. [百度学术]
Tsukamoto Y, Ishihara K, Kobari Y. Evaluation of run-out distances of slope failures during 2004 Niigata-Ken Chuetsu earthquake[J]. Soils and Foundations, 2006,46(6):713-725. [百度学术]
王双,李小春,石露,等.物质点强度折减法及其在边坡中的应用[J].岩土力学,2016,37(9):2672-2678. [百度学术]
WANG Shuang, LI Xiaochun, SHI Lu, et al. Material point strength reduction method and its application to slope engineering[J]. Rock and Soil Mechanics, 2016,37(9):2672-2678. [百度学术]
孙玉进,宋二祥.大位移滑坡形态的物质点法模拟[J].岩土工程学报,2015,37(7):1218-1225. [百度学术]
SUN Yujin, SONG Erxiang. Material point method simulation of large displacement landslide morphology[J]. Chinese Journal of Geotechnical Engineering, 2015,37(7):1218-1225. [百度学术]
Zhao X, Liang D, Martinelli M. Numerical simulations of dam-break floods with MPM[J]. Procedia Engineering, 2017,175:133-140. [百度学术]
Troncone A, Conte E, Pugliese L. Back‑analysis of the post-failure stage of a landslide using the material point method[C]. Cham: Proceedings of the Springer International Publishing, 2020:265-272. [百度学术]
Yerro A, Soga K, Bray J. Runout evaluation of Oso Landslide with the material point method[J]. Canadian Geotechnical Journal, 2019,56(9):1304-1317. [百度学术]
Xu X R, Jin F, Sun Q C, et al. Three-dimensional material point method modeling of runout behavior of the Hongshiyan Landslide[J]. Canadian Geotechnical Journal, 2019,56(9):1318-1337. [百度学术]
Conte E, Pugliese L, Troncone A. Post‑failure stage simulation of a landslide using the material point method[J]. Engineering Geology, 2019,253:149-159. [百度学术]
Coelhol B Z, Rohe A, Soga K. Poroelastic solid flow with material point method[J]. Procedia Engineering, 2017,175:316-323. [百度学术]
Dong Y, Wang D, Randolph M F. Runout of Submarine Landslide simulated with material point method[J]. Journal of Hydrodynamics, 2017,29(3):438-444. [百度学术]
Li X, Wu Y, He S, et al. Application of the material point method to simulate the post-failure runout processes of the Wangjiayan Landslide[J]. Engineering Geology, 2016,212:1-9. [百度学术]
Huang P, Li S l, Guo H, et al. Large deformation failure analysis of the soil slope based on the material point method[J]. Computational Geosciences, 2015,19(4):951-963. [百度学术]
Sulsky D, Chen Z, Schreyer H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994,118(1):179-196. [百度学术]
邹家强,张巍,刘爱华.物质点法在椭圆骨料混凝土损伤模拟中的应用[J].人民长江,2019,50(7):174-178. [百度学术]
ZOU Jiaqiang, ZHANG Wei, LIU Aihua. Application of material point method in damage simulation of elliptical aggregate concrete[J]. Yangtze River, 2019,50(7):174-178. [百度学术]
史卜涛,张云,张巍.边坡稳定性分析的物质点强度折减法[J].岩土工程学报,2016,38(9):1678-1684. [百度学术]
SHI Butao, ZHANG Yun, ZHANG Wei. Material point strength reduction method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016,38(9):1678-1684. [百度学术]
曾一芳,王鹏,明俊男,等.基于拉剪强度同等折减法的滑坡稳定性分析[J].探矿工程(岩土钻掘工程),2018,45(2):84-88. [百度学术]
ZENG Yifang, WANG Peng, MING Junnan, et al. Stability analysis of landslide based on tensile shear strength equivalent reduction method[J]. Exploration Engineering (Rock & Soil Drilling and Tunnelling), 2018,45(2):84-88. [百度学术]
张雄,廉艳平,杨鹏飞,等.冲击爆炸问题的三维物质点法数值仿真[J].计算机辅助工程,2011,20(4):29-37. [百度学术]
ZHANG Xiong, LIAN Yanping, YANG Pengfei, et al. Numerical simulation of three‑dimensional material point method for impact and explosion problem[J]. Computer Aided Engineering, 2011,20(4):29-37. [百度学术]
Troncone A, Pugliese L, Conte E. Run-out simulation of a landslide triggered by an increase in the groundwater level using the material point method[J]. Water, 2020,12(10):2817. [百度学术]
Zhang X, Chen Z, Liu Y. The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases[M]. London United Kingdom: Elsvier Inc, 2016. [百度学术]
李远宁,潘勇,冯晓亮,等.三峡库岸滑坡变形特征及影响因素分析[J].探矿工程(岩土钻掘工程),2018,45(8):127-131. [百度学术]
LI Yuanning, PAN Yong, FENG Xiaoliang, et al. Analysis of deformation characteristics and influencing factors of landslide on the bank of Three Gorges Reservoir[J]. Exploration Engineering (Rock & Soil Drilling and Tunnelling), 2018,45(8):127-131. [百度学术]
文豪,陈国庆,李红,等.考虑降雨滑坡多级滑动的改进传递系数法研究[J].地质科技通报,2022,41(6):162-168. [百度学术]
WEN Hao, CHEN Guoqing, LI Hong, et al. Study on improved transfer coefficient method considering multi‑stage sliding of rainfall landslide[J]. Bulletin of Geological Science and Technology, 2022,41(6):162-168. [百度学术]
卢永兴,陈剑,霍志涛,等.降雨与开挖作用下黄土滑坡失稳过程分析:以关中地区长武县杨厂村老庙滑坡为例[J].地质科技通报,2022,41(6):95-104. [百度学术]
LU Yongxing, CHEN Jian, HUO Zhitao, et al. Analysis of instability process of the loess landslides under rainfall and excavation actions:A case study of Laomiao landslide at Yangchang Village in Changwu County,Guanzhong area[J]. Bulletin of Geological Science and Technology, 2022,41(6):95-104. [百度学术]