摘要
“嫦娥5号”探测器的成功发射与采样返回,揭开了我国月球采样的序幕。面对当前月球(未来深空)探测的需求,钻进技术作为能够获取深层地质样品的最常用手段,受到越来越多的关注。然而,地球环境下的常规钻探机具与工艺在面对月球(太空)环境时并不能直接进行应用。基于此,本文就当前各国月球钻探技术的研究进展进行了广泛调研与分析,具体包括真实月壤的性能及模拟月壤的研发、月球环境对钻进的影响、月球钻探机具结构和月球钻探规程的探索等几个方面;并对未来月球钻探技术的发展进行了分析思考。
深空探测技术的发展是国家技术水平的综合体现,对相关科学领域也存在着巨大的引领和驱动作用。作为距离地球最近的星体,月球是各国在深空探测领域进行战略性抢占的首选试验场。近年来,多国结合20世纪50-70年代美苏对月球探测的经验教训,开展了相关的月球探测计划。其中,2004年是一个重要时间节点,中国、美国、俄罗斯和欧洲航天局都在同一年提出了各自的月球探测计划。中国于2004年启动“嫦娥工程”月球探测计划,并将其分为“绕-落-回”三个阶段,于2020年11月24日发射的“嫦娥5号”月球探测器,实现了月面无人采样,同步完成深层钻取和浅层表取2项取样任务,并于12月17日携带1731 g样品成功返
“嫦娥5号”的成功实施,使中国成为继美国Apollo计划和前苏联Luna计划后成功实现了月球钻探采样的第三个国家。现阶段,对月球样品的分析是当前月球探测计划的主要目标之一。月球样品不仅包含月壳内部构造、演化历史等相关地质信息,也包含太阳系早期演化历史、太阳风性质与辐射特征、陨石撞击记录等领域的重要信息。对样品中这些相互交织的信息进行解读,是对月球、地球乃至太阳系研究的一项重大挑战和突破。就月球样品而言,广义上可分为3大类:坚硬固体类(月岩)、松散可变形类(月壤)、气态类(月尘
但值得注意的是,仅凭月球表面样品无法获取足够丰富的信息,同时考虑到取样过程中对月球表面样品的潜在污染,故数十甚至百米深度以深的实物地质样品对月球探测任务不可或缺。为了有效保留样品层理性等更多信息,钻进技术是目前获取地下实物样品唯一有效的采样方
了解地层结构是钻探任务设计的首要参考。对于月球地层结构,目前的学界共识是在月球表面覆盖有平均厚度为4~15 m的松散月
各国研究人员对美国和前苏联所采真实月壤进行了大量的数据分析与研究,从矿物成分至物理力学性能等各个方面均取得了翔实的研究成

图1 来自Apollo 16 任务的74个真实月壤颗粒样品形
Fig.1 74 real lunar soil particle samples from Apollo 16

图2 典型月壤颗粒粘结物形
Fig.2 Morphology of typical lunar soil granule
由于真实月壤数量极其稀少(中美苏合计不足385 kg),不能满足各国针对月球探测的大规模研发需求,模拟月壤的研发不可避免。受采样位置限制,真实月壤特征参数较为离散,没有明显的规律性,因此各国的模拟月壤研发分为两个方向:一是特定功能性月壤,即仅针对某些特定物理力学性质的模拟,二是通用型模拟月壤,即对特定区域的真实月壤进行所有化学成分和物理力学性质的全面模拟。这两个方向不分优劣,在特定的条件下均能满足相关任务研发需求。如
注: 带*号是在所有化学成分和物理力学性质上全方位模拟真实月壤;其余仅在特定的物理力学性质上模拟真实月壤。
将

图3 模拟月壤研发国家分布
Fig.3 Research and development distribution of
lunar soil simulant in various countries

图4 模拟月壤的研发功能划分
Fig.4 Functional division of lunar soil simulant
developed by various countries
月球钻探过程中,首先需要面对的就是相比地球更极端的采样环境,如
基于
(1)有限的动力、能源和质量大
(2)恶劣的环境条
(3)地质条件的多样性和不确定
(4)通信延
基于对各国已实施和计划中钻进采样设备进行调研,月球(行星)钻进采样主要包含如

图5 常见的行星采样钻探机具类
Fig.5 Typical types of planetary drilling structure
(1)直接使用螺旋钻杆进行钻进,样品通过螺旋叶片传输至地表进行取样(
(2)使用外螺旋内中空钻杆进行钻进,钻杆外壁螺旋叶片排除钻渣,月壤直接进入钻杆内中空进行采样(
(3)使用双层结构,外部使用硬质螺旋钻杆结合钻头进行钻进并排除钻渣,内部使用软袋保护采集样品,随钻进深度的增加提拉软袋对样品进行保护(
(4)使用双层结构,外部使用硬质螺旋钻杆结合钻头进行钻进并排除钻渣,内部使用硬管,在钻进深度到位后内部硬管伸出,压取样品(
(5)鼹鼠式钻进结构,使用小型机器人结构,结构前端存在微型螺旋叶片,后端接入连接导线,完成初始设定后自动钻进至指定位置进行微量采样(
基于对5种不同钻进取样方式的统计,从结构原理上看(

图6 不同原理的行星钻进设备研发趋势
Fig.6 Development trends of planetary drilling equipment with different principles
从国家和地区的发展趋势上看(

图7 不同国家的行星钻进设备研发趋势
Fig.7 Development trends of planetary drilling equipment in different countries
自2007年首次出现至今,据不完全统计,有6个探测器(含已发射和研发中)携带有外螺旋直接采样式的钻具,包括:
(1)2007年美国NASA发射的火星Phoenix探测器(

图8 美国NASA钻进机
Fig.8 Drilling equipment developed by NASA
(2)2009年,Honeybee公司设计的CRUX型采样器(

图9 Honeybee公司的钻进机
Fig.9 Drilling equipment developed by Honeybee
(3)2011年美国NASA发射的火星Curiosity火星车(
(4)2013年Honeybee公司为火星冰层钻进设计的Icebreaker钻具(
(5)2013年Honeybee公司设计的LITA整机式钻进系统(
(6)2014年Honeybee公司推出的高功率整机式钻进系统LPD,整机12 kg,分为冲击、螺旋钻杆、钻进、部署4个主要部分,其中螺旋钻杆可承受200 r/min、10 N·m扭矩;冲击机构可实现功率150 W、冲击功2.6 J/击和1600击/min的冲击频率;整机则可实现500 N高钻
外螺旋内中空取心式机具是最常规的月球(行星)钻进取样方式,在美国Apollo计划和前苏联Luna计划中就有使用这种方式。据不完全统计,前后有十余种(含已使用与研发中)设备采用这种形式,归纳如下:
(1)1970-1972年苏联Luna16、Luna20系列任务(

图10 Luna16、24任务的钻进机
Fig.10 Drilling structure used in Luna16、24
1971-1972年美国Apollo15、Apollo16、Apollo17系列任务(

图11 Apollo15~17系列任务使用的钻进机
Fig.11 Drilling structure used in Apollo 15~17
(2)1978-1984年前苏联针对金星发射的采样器上携带的GZU drill设备(

图12 GZU drill设备结
Fig.12 GZU drill structure
(3)1980年美国研发的CDS(Core Drill System)系统,整机质量41.2 kg,尺寸1765 mm×142 mm×140 mm,能耗236 W,设计钻进1 m,钻速500 mm/min(土体),50 mm/min(岩石),样品直径19 mm,需要能量65 kJ/m样品,计算能效2.28 kJ/c
(4)1995年欧洲航天局针对彗星取样研发的Corer Tool和Surface Tool,其中Corer Tool 设计直径100 mm,长度1400 mm,Surface Tool设计直径150 mm,长度600 mm
(5)2002年意大利宇航局研发的Dee Dri设备(

图13 Dee Dri 设备示
Fig.13 Schematic of Dee Dri device
(6)2003年Honeybee公司针对火星钻进设计的Mini⁃Corer系统(

图14 Mini⁃Corer系
Fig.14 The Mini⁃Corer system
(7)2005年欧洲航天局针对火星钻探研发的原型样机MRoSA2(

图15 MRoSA2样
Fig.15 MRoSA2 prototype
(8)2008年美国NASA针对火星研发的MARTE试验系统(

图16 MARTE试验系
Fig.16 MARTE test system
(9)2009年中国北京航空航天大学研发了MRDD取样样机(

图17 MRDD取样样
Fig.17 MRDD sample machine
(10)2014年Honeybee公司为Mars2020计划研发的MicroDrill设备设计了双层管取样设备(

(a) 偏心取样结构

(b) OBOC岩心存储系统
图18 MicroDrill双层管取样设
Fig.18 MicroDrill double tube sampling equipment
外螺旋内中空软袋取心式钻具较为少见,迄今为止仅有前苏联Luna 24任务和中国嫦娥5号任务中进行过实地使用。如

图19 Luna 24任务的取心装
Fig.19 Coring device of Luna 24
中国嫦娥5号取样器的相关信息暂不明确,相关新闻报道如

图20 嫦娥5号取样机具
Fig.20 Sample structure of Chang’e-5
得益于嫦娥5号的驱动,中国相关科研院所在这种采样方式上投入了相当的研发精力,哈尔滨工业大学、北京航空航天大学和中国地质大学(武汉)均有过类似样机的研发报道,如

图21 外螺旋内中空软袋取心采样样机
Fig.21 Coring sampling proto type with outer helix inner hollow soft bag
目前可见报道的外螺旋内中空硬管取心式钻具主要针对小行星钻探设计,其中已发射的探测器包括2004年的Rosetta任务中Philae探测器上携带的SD2(Sampler, Drill and Distribution)设备, 设计钻进深度230 mm,考虑到着陆器和彗星表面的距离,实际钻距530 mm。自身为4自由度结构,总质量5100 g,机械部分3700 g,电子控制设备1000 g,其余400 g。电力消耗,待机1.5 W,钻进时6~14.5 W,采用聚晶金刚石钻头,钻压100 N,采样尺寸3 mg或20 m

图22 Rosetta任务SD2采样设
Fig.22 SD2 sampling equipment of Rosetta
北京航空航天大学于2017年也针对小行星钻进采样研发了DSSHS系统(Drilling,Sampling, and Sampling⁃Handling System),如

图23 DSSHS系
Fig.23 DSSHS system
在前4种钻进方式里,共同的特点在于都存在较长的钻柱,当钻进深度较大时上部钻柱的运动将耗费探测器珍贵的功率。因此鼹鼠式钻进机具应运而生,其研发的主要目的在于利用更小的功耗达到更大的钻进深度以及更远的钻进位置。相对于前4种钻进方式更贴近于垂直钻进的特点,鼹鼠式钻进方式由于其尺寸的优势可达到近似定向钻进的效果。自1999年以来,鼹鼠式钻进设备的研发不完全统计如下:
(1)1999年美国NASA在针对火星的Mars Polar Lander任务中首次研发了DS2(Deep Space 2)设备(

(a) 示意图

(b) 实物图
图24 DS2设
Fig.24 DS2 equipment
(2)2003年欧洲航天局针对火星的Mars Express任务研发的Beagle2着陆器同样携带了鼹鼠式钻进设备PLUTO(PLanetary Underground TOol),如

图25 PLUTO设
Fig.25 PLUTO equipment
(3)2003年Honeybee公司也推出了IDDS系统(Inch⁃worm Deep Drilling System),如

图26 IDDS系
Fig.26 IDDS system
(4)2006年美国东北大学报道鼹鼠式钻进设备的样机RPDS(Robotic Planetary Drilling System),如

图27 RPDS系
Fig.27 RPDS system
(5)2009年日本研究生院大学和日本宇航局联合研发推出了SSD和CSD两款鼹鼠式钻进设备(图

图28 CSD系
Fig.28 CSD system

图29 SSD系
Fig.29 SSD system
(6)2014年中国哈尔滨工业大学研制了蠕动掘进式潜入器样机(

图30 哈尔滨工业大学蠕动式潜入器样
Fig.30 Peristaltic submersible prototype of Harbin
Institute of Technology
(7)2016年美国喷气推进实验室(JPL)与Honeybee公司联合推出了带冲击回转功能的长管式鼹鼠钻进设备Auto⁃Gopher钻具(

图31 Auto⁃Gopher钻具样
Fig.31 Auto⁃Gopher drilling tool prototype
综合分析5种不同月球(行星)钻进机具可知,尽管取心方式不同,各种类型的设备其主导的钻进方式仍然是螺旋钻进为主,故螺旋钻具的钻屑输送效率是评价月球钻探效率的关键因素。在这方面,我国哈尔滨工业大学、北京航空航天大学均进行了较为深入的研究。
哈尔滨工业大学提出使用输送能力因子用以表征螺旋叶片清除岩屑的效率。通过理论分析和离散元模拟,证明螺旋钻的俯仰角、摩擦环境和螺旋槽边界等参数均会对螺旋叶片的输送效率产生影响,并且得到了经过优化的螺旋俯仰角约为15°~30°(具体值需要随环境变化而改变)。相关试验证明,在较低的俯仰角条件下,钻进系统的环境适应性更好,但输送效率降低;较高的俯仰角输送效率增加,但环境适应性降
北京航空航天大学研究了螺旋叶片的输送动力学,并基于模拟月壤试验证明叶片携带岩屑颗粒的应力耦合效应对输送动力学起重要的作用。通过DEM离散元模拟了输送过程中颗粒的运动和应力特征,并以此为据建立了简化的动力学模型,试验、模拟与理论3个方面证实螺旋叶片的输送效率仅与转速成正比,与重力无
钻进规程参数也是影响钻进效率的重要因素,因此各国研究人员在这方面也进行了相关研究。加拿大北方先进技术中心(NORCAT)通过试验提出了在行星钻进过程中,钻进1 m深度时大致的功率分布为:粉碎岩屑占总消耗功率的30%,钻柱的摩擦和岩屑运移占总消耗功率的50%,给进过程占比5%,而驱动损耗占比15%,且随钻进深度的增大,钻杆摩擦所消耗的能量会越来越
Honeybee公司除了研发机具外,就钻进规程也通过试验证实在指定钻压条件下,钻速和钻进能耗正比于转速,高转速同时也能提高排屑效

图32 Auto⁃Gopher钻具间歇开关机钻速效率分
Fig.32 Analysis of drilling efficiency of intermittent switch machine based on Auto⁃Gopher
中国地质大学(武汉)通过试验指出,月球钻探过程中钻压和转速对钻进功率消耗的影响显著,当钻速恒定,转速增大8倍(由40 r/min增长至320 r/min)时,钻进功率增大14.3倍(由11.3 W增长至172.88 W);当转速(320 r/min)、钻速(100 mm/min)与钻深(2 m)均恒定时,钻压增大10倍(由100 N增长至1000 N)功率仅增加1.09倍(由153.42 W增长至320.33 W)。由此可见,转速是影响月球钻探功率消耗的核心因素。但试验同时指出,转速的变化与取心率之间并无显著关联,因此在实际钻进中,应在保证钻进排屑正常的条件下,采用相对较低的转速进行钻进,此时对功耗的需求较低,且转速偏低时钻具对内管中的取心样品扰动也更
作为距离地球最近的星体,月球在深空探测中的地位无可撼动。分析采集回的样品是了解月球乃至太阳系相关地质结构等信息最有效的途径。为了确定月球(行星)的地质构成,为了寻找现存或过去的微生物(水源)的证据,仅凭地表的样品无法满足要求,必须采集数米到数百米深度的地下地质样品。在这样的需求条件下,钻进是最有效的采样方式,迄今为止全世界所有计划和实施的采样任务中均涉及包含了钻探采样设备。因此钻进技术无疑是当前月球探测与未来深空探测不可或缺的技术手段。
据此,本文针对当前月球钻探采样的对象、环境、机具与钻进效率评估进行了相关文献资料的调研与统计分析。从中可以看出,常规钻探技术储备仅能够满足实现月球钻探动作,但月球钻探任务的设计研发过程中,就其中不可或缺的钻进效率分析、钻进能耗控制、高效规程参数优化等关键环节而言,在月球极端环境下,这些关键环节需要考虑的影响因素与地球截然不同。综上所述,可展望在未来月球(深空)钻探相关任务中,钻探技术需要发展的几个方向为:
(1)研发多元化的钻探取样方法:可根据任务的特点、钻探对象的属性、探测器功耗等影响因素有针对性地选用最合适的钻探方法;
(2)研发多元化的钻进取心结构:可根据不同的钻探环境(低温、低压、电磁干扰等)和不同的取样要求(质量、数量、层理、深度等),可实现有针对性地选用不同的钻进取心结构,同时各取心结构的运动与采样机理也需要建立对应的量化分析模型;
(3)研发钻探过程中工况识别相关技术:面对陌生的地外钻探环境,对周围环境、钻进地层、以及机具自身工况的分析识别技术,是保证地外钻探采样不可或缺的技术,准确的工况识别技术能够最大程度地保护设备在遭遇极端情况时及时采取相关的对应措施;
(4)研发具有高度自适应的无人自动控制技术:我国针对地外行星的钻探探索一定是无人自动采样探测器优先,故能够进行自动探测、分析、决策的钻探采样设备不可或缺。
请获奖作者尽快与编辑部联系,提供联系地址和联系电话,编辑部将免费邮寄证书。
;联系电话:0316-2096324 E⁃mail:396981878@qq.com。
参考文献(References)
林杨挺,欧阳自远.地球化学发展新机遇:嫦娥5号月球样品研究[C]//中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会.西安,2017. [百度学术]
LIN Yangting, OUYANG Ziyuan. New opportunities for geochemistry development: research on Chang’e 5 moon samples[C]//The Ninth National Congress of Chinese Society of Mineralogy, Petrology and Geochemistry and the 16th Annual Academic Conference. Xi’an, 2017. [百度学术]
尹怀勤,王洪鹏.飞向月球——嫦娥工程[J].军事文摘,2016(22):34-37. [百度学术]
YIN Huaiqin, WANG Hongpeng. Flying to the moon—Chang’e Project[J]. Military Abstracts, 2016(22):34-37. [百度学术]
GALIMOV E M. Luna—Glob project in the context of the past and present lunar exploration in Russia[J]. Journal of Earth System Science, 2005,114(6):801-806. [百度学术]
LAWLER A. The new race to the moon[J]. Science, 2003,300(5620):724-727. [百度学术]
MATSUMOTO K, KAMIMORI N, TAKIZAWA Y, et al. Japanese lunar exploration long⁃term plan[J]. Acta Astronautica, 2006,59(1-5):68-76. [百度学术]
NAJA G. The second report by ESA’s Long⁃Term Space Policy Committee (LSPC)[J]. Esa Bulletin⁃European Space Agency, 2000,102:87-90. [百度学术]
NEAL C R. The moon 35 years after Apollo: What’s left to learn?[J]. Chemie der Erde⁃Geochemistry, 2009,69(1):3-43. [百度学术]
姜生元,沈毅,吴湘,等.月面广义资源探测及其原位利用技术构想[J].深空探测学报,2015(4):291-301. [百度学术]
JIANG Shengyuan, SHEN Yi, WU Xiang, et al. Technical schemes of investigation and in‑situ utilization for lunar surface generalized resources[J]. Journal of Deep Space Exploration, 2015(4):291-301. [百度学术]
TAYLOR G J, WARREN P, RYDER G, et al. Lunar source book: A user’s guide to the moon[M]. Cambridge: Cambridge University Press, 1991. [百度学术]
谢开钰.钛铁矿及月壤仿真样提取金属及制备氧气[D].沈阳:东北大学,2016. [百度学术]
XIE Kaiyu. Extracting of metal and oxygen from ilmenite and lunar soil simulant composite oxides[D]. Shenyang: Northeastern University, 2016. [百度学术]
MAGNANI P, RE E, SENESE S, et al. Different drill tool concepts[J]. Acta Astronautica, 2006,59:1014-1019. [百度学术]
ZACNY K, COOPER G. Strategies for drilling on Mars[J]. Journal of Geophysical Research, 2005,1(1):1-10. [百度学术]
ANTTILA M. Concept evaluation of Mars drilling and sampling instrument[D]. Helsinki: Helsinki University of Technology Laboratory of Space Technology, 2005. [百度学术]
李谦.模拟月壤表层采样理论模型及其应用研究[D].武汉:中国地质大学(武汉),2014. [百度学术]
LI Qian. Research and application on surface sampling theoretical model based on lunar soil simulant[D]. Wuhan: China University of Geosciences (Wuhan), 2014. [百度学术]
KING R H, Van SUSANTE P, GEFREH M A. Analytical models and laboratory measurements of the soil‑tool interaction force to push a narrow tool through JSC-1A lunar simulant and Ottawa sand at different cutting depths[J]. Journal of Terramechanics, 2011,48(1): 85-95. [百度学术]
科万科B.B.,卢斯秋克H.Г.,科米斯萨尔丘克A.A.月壤特性与开发技术[M].北京:国防工业出版社,2013. [百度学术]
KOVANKE B. B., Г.LUSTYUK H., KOMISSARCHUK A. A. Lunar soil characteristics and development technology[M]. Beijing: National Defense Industry Press, 2013. [百度学术]
郑永春,欧阳自远,王世杰,等.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19. [百度学术]
ZHENG Yongchun, OUYANG Ziyuan,WANG Shijie, et al. Physical and mechanical properties of lunar regolith[J]. Journal of Mineralogy and Petrology, 2004,24(4):14-19. [百度学术]
CARRIER W. Particle size distribution of lunar soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003,129:956-959. [百度学术]
KATAGIRI J, MATSUSHIMA T, YAMADA Y, et al. Investigation of 3D grain shape characteristics of lunar soil retrieved in Apollo 16 using image‑based discrete‑element modeling[J]. Journal of Aerospace Engineering, 2014,28(4):4014092. [百度学术]
PITCHER C. Advancing the dual reciprocating drill design for efficient planetary subsurface exploration[D]. Surrey: University of Surrey, 2016. [百度学术]
Planetary Simulant Database[EB/OL]. [2020.3.11]. https://sciences.ucf.edu/class/planetary-simulant-database/. [百度学术]
GREEN A, MELZER K. Performance of boeing LRV wheels in a lunar soil simulant; Effect of wheel design and soil, M⁃71⁃10[R].Army Engineering Waterways Experiment Station, Vicksburg, MS, 1971. [百度学术]
TANG H, LI X, ZHANG S, et al. A lunar dust simulant: CLDS‑i[J]. Advances in Space Research, 2016,59(4):1156-1160. [百度学术]
樊世超,贾阳,向树红,等.月面地形地貌环境模拟初步研究[J].航天器环境工程,2007,24(1):15-20. [百度学术]
FAN Shichao, JIA Yang, XIANG Shuhong, et al. A preliminary study on simulation of lunar surface terrain[J]. Spacecraft Environment Engineering, 2007,24(1):15-20. [百度学术]
江磊,苏波,王长科,等.LBD模拟月壤研究[C]//中国宇航学会深空探测技术专业委员会第七届学术年会.哈尔滨,2010. [百度学术]
JIANG Lei, SU Bo, WANG Changke, et al. Study on LBD soil simulant[C]//The 7th Annual Conference of the Deep Space Exploration Technology Professional Committee of Chinese Astronautical Society. Harbin, 2010. [百度学术]
李建桥,邹猛,贾阳,等.用于月面车辆力学试验的模拟月壤研究[J].岩土力学,2008,29(6):1557-1561. [百度学术]
LI Jianqiao, ZOU Meng, JIA Yang, et al. Lunar soil simulant for vehicle‑terramechanics research in labtory[J]. Rock and Soil Mechanics, 2008,29(6):1557-1561. [百度学术]
刘德赟,王露斯,孙启臣,等.月球极区冻土模拟月壤钻进试验研究[J].科学技术与工程, 2018,18(25):256-261. [百度学术]
LIU Deyun, WANG Lusi, SUN Qichen, et al. Drilling experiment of simulated icy soil of lunar polar region[J]. Science Technology and Engineering, 2018,18(25):256-261. [百度学术]
邹维列,陈轮,张俊峰,等.低围压水平下QH-E模拟月壤三轴试验技术与力学特性[J].岩土工程学报,2015(8):1418-1425. [百度学术]
ZOU Weilie, CHEN Lun, ZHANG Junfeng, et al. Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress[J]. Chinese Journal of Geotechnical Engineering, 2015(8):1418-1425. [百度学术]
BRUNSKILL C, LAPPAS V. The effect of relative soil density on microrover trafficability under low ground pressure conditions[C]//Proceedings of the 2009 International Society for Terrain and Vehicle Systems (ISTVS) European Conference, 2009. [百度学术]
赵德明.月壤钻进排屑模型与曲面螺旋式取心钻具研究[D].哈尔滨:哈尔滨工业大学,2016. [百度学术]
ZHAO Deming. Research on lunar soil chip removing model and lunar subsurface coring drill[D]. Harbin : Harbin Institute of Technology, 2016. [百度学术]
ZHANG T, XU K, YAO Z, et al. The progress of extraterrestrial regolith‑sampling robots[J]. Nature Astronomy, 2019,3(6):487-497. [百度学术]
BADESCU V, ZACNY K. Outer solar system: Prospective energy and material resources[M]. Springer, 2018. [百度学术]
PIKE W, STAUFER U, HECHT M, et al. Quantification of the dry history of the Martian soil inferred from in situ microscopy[J]. Geophysical Research Letters, 2011,38:L24201. [百度学术]
GAO Y. Contemporary planetary robotics: An approach toward autonomous systems[M]. John Wiley & Sons, 2016:1-410. [百度学术]
ZHANG T, ZHANG W, WANG K, et al. Drilling, sampling, and sample‑handling system for China’s asteroid exploration mission[J]. Acta Astronautica, 2017,137:192-204. [百度学术]
丁希仑,李可佳,尹忠旺.面向月壤采集的多杆深层采样器[J].宇航学报,2009,30(3):1189-1194. [百度学术]
DING Xilun, LI Kejia, YIN Zhongwang. Multi‑rod deep driller for lunar subsurface sampling [J]. Journal of Astronautics, 2009,30(3):1189-1194. [百度学术]
BONITZ R, SHIRAISHI L, ROBINSON M, et al. NASA Mars 2007 Phoenix lander robotic arm and icy soil acquisition device[J]. Journal of Geophysical Research, 2008,113:E1A. [百度学术]
PAULSEN G, ZACNY K, MCKAY C, et al. Rotary‑percussive deep drill for planetary applications[C]//Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, 2010. [百度学术]
GROTZINGER J, CRISP J, VASAVADA A, et al. Mars science laboratory mission and science investigation[J]. Space Science Reviews, 2012,170:5-56. [百度学术]
ANDERSON R, JANDURA L, OKON A, et al. Collecting samples in gale crater, Mars: An overview of the Mars science laboratory sample acquisition, sample processing and handling system[J]. Space Science Reviews, 2012,170:57-75. [百度学术]
MCKAY C, STOKER C, GLASS B, et al. The Icebreaker life mission to Mars: A Search for biomolecular evidence for life[J]. Astrobiology, 2013,13(4):334-353. [百度学术]
ZACNY K, PAULSEN G, MCKAY C P, et al. Reaching 1m deep on Mars: The Icebreaker drill[J]. Astrobiology, 2013,13:1166-1198. [百度学术]
GLASS B, LEE P, HUFFMAN S, et al. Testing of Mars‑prototype drills at an analog site[C]//Earth and Space 2014: Engineering for Extreme Environments, 2014. [百度学术]
ZACNY K, PAULSEN G, KLEINHENZ J, et al. Development and testing of a lunar prospecting drill (LPD) to search for water‑ice[C]//Earth and Space 2014: Engineering for Extreme Environments, 2014. [百度学术]
ZACNY K, PAULSEN G, SZCZESIAK M, et al. Lunar Vader: Development and testing of lunar drill in vacuum chamber and in lunar analog site of antarctica[J]. Journal of Aerospace Engineering, 2013,26:74-86. [百度学术]
GOREVAN S, MYRICK T, MUKHERJEE S, et al. Strategies for future Mars exploration: An infrastructure for the near and longer‑term future exploration of the subsurface of Mars[C]//6th International Conference on Mars, 2003. [百度学术]
STOKER C, CANNON H, DUNAGAN S, et al. The 2005 MARTE robotic drilling experiment in Río Tinto, Spain: objectives, approach, and results of a simulated mission to search for life in the Martian subsurface[J]. Astrobiology, 2008,8:921-945. [百度学术]
CANNON H, STOKER C, DUNAGAN S, et al. MARTE: Technology development and lessons learned from a Mars drilling mission simulation[J]. J. Field Robotics, 2007,24:877-905. [百度学术]
ZACNY K, MUELLER R, EBERT T, et al. MicroDrill sample acquisition system for small class exploration spacecrafts[C]//Earth and Space 2014: Engineering for Extreme Environments,2014. [百度学术]
ZACNY K, CHU P, DAVIS K, et al. Mars 2020 sample acquisition and caching technologies and architectures[C]//2014 IEEE Aerospace Conference, 2014. [百度学术]
张建斐.月壤钻取采样钻具进给机构动力学仿真分析[D].大连:大连理工大学,2017. [百度学术]
ZHANG Jianfei. Dynamic simulation analysis of drill feeding mechanism for lunar soil sampling[D]. Dalian: Dalian University of Technology, 2017. [百度学术]
嫦娥五号月面作业什么最难?[EB/OL]. [2020-12-21]. https://zhuanlan. zhihu.com/p/328689463. [百度学术]
What is the most difficult task for the lunar surface of Chang’e 5?[EB/OL]. [2020-12-21]. https://zhuanlan. zhihu.com/p/328689463. [百度学术]
为了月球这抔土,嫦娥五号有多拼[EB/OL]. [2020-12-21]. https://www.thepaper.cn/newsDetail_forward_ 10248158. [百度学术]
Chang’e 5 has more spells to squeeze the earth on the moon, [EB/OL]. [2020-12-21]. https:// www. thepaper. cn/ newsDetail_forward_ 10248158. [百度学术]
ZHANG T, DING X. Drilling forces model for lunar regolith exploration and experimental validation[J]. Acta Astronautica, 2016,131:190-203. [百度学术]
ZHANG T, DING X, LIU S, et al. Experimental technique for the measurement of temperature generated in deep lunar regolith drilling[J]. International Journal of Heat and Mass Transfer, 2019,129:671-680. [百度学术]
CHEN T, ZHEN Z, SCHWARTZ S, et al. Invariance of conveying capacity for drilling into lunar soil simulant[J]. Advances in Space Research, 2019,64:1816-1824. [百度学术]
CHEN T, ZHEN Z, WANG Q, et al. Modeling and experimental investigation of drilling into lunar soils[J]. Applied Mathematics and Mechanics, 2019,40:153-166. [百度学术]
ZHAO Z, CHEN T, PANG Y. Optimum parameter matching obtained by experiments for coring drilling into lunar simulant[J]. Advances in Space Research, 2019,63:2239-2244. [百度学术]
QIQUAN Q, TANG J, YUAN F, et al. Drilling load modeling and validation based on the filling rate of auger flute in planetary sampling[J]. Chinese Journal of Aeronautics, 2016,30:434-446. [百度学术]
吴淼.月壤钻探取心机构性能测试系统研制及试验研究[D].哈尔滨:哈尔滨工业大学,2014. [百度学术]
WU Miao. Development and experimental study of drilling & coring mechanism for lunar soil test system[D]. Harbin: Harbin Institute of Technology, 2014. [百度学术]
王清川.钻取采样参数测试平台研制及试验研究[D].哈尔滨:哈尔滨工业大学,2012. [百度学术]
WANG Qingchuan. Development and experimental study of drilling & sampling test-bed[D]. Harbin: Harbin Institute of Technology, 2012. [百度学术]
张禹.滑轨式月壤钻取采样装置关键技术研究[D].哈尔滨:哈尔滨工业大学,2010. [百度学术]
ZHANG Yu. Research on the key technologies of drilling‑sampling system of slide‑type for lunar soil [D]. Harbin: Harbin Institute of Technology, 2010. [百度学术]
李大佛,雷艳,许少宁.月球钻孔取心机具研制与试验[J].探矿工程(岩土钻掘工程),2015,42(2):1-7. [百度学术]
LI Dafo, LEI Yan, XU Shaoning. Development of lunar coring tools and the experiment[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2015,42(2):1-7. [百度学术]
柏德恩.基于单刃切削模型的钻具与月壤相互作用特性研究[D].哈尔滨:哈尔滨工业大学,2014. [百度学术]
BAI Deen. Research of interaction between lunar regolith and drilling tool based on single‑blade cutting model [D]. Harbin: Harbin Institute of Technology, 2014. [百度学术]
李操.基于机械臂的月壤挖掘采样及力学参数辨识的研究[D].哈尔滨:哈尔滨工业大学,2014. [百度学术]
LI Cao. Study of lunar soil excavation acquisition and mechanical parameters identification based on robot arm [D]. Harbin: Harbin Institute of Technology, 2014. [百度学术]
孟炜杰,曾婷,刘丽,等.用于深层月壤采样返回的软质取心袋的设计与测试验证[J].航天器环境工程,2014,31(1):88-91. [百度学术]
MENG Weijie, ZENG Ting, LIU Li, et al. Design and test verification of soft extraction bag used for deep lunar soil sampling and return[J]. Spacecraft Environment Engineering, 2014,31(1):88-91. [百度学术]
战庆欣.月面钻进采样过程钻具热特性实验研究[D].哈尔滨:哈尔滨工业大学,2014. [百度学术]
ZHAN Qingxin. Experimental research on the drilling tool’s thermal characteristics during lunar surface’s drilling and sampling[D]. Harbin: Harbin Institute of Technology, 2014. [百度学术]
刘天喜,魏承,马亮,等.月壤钻采取样方式对样品层理的影响[J].农业机械学报,2014,45(12):355-361. [百度学术]
LIU Tianxi, WEI Cheng, MA Liang. Influence of coring methods on sample bedding in lunar soil drill‑sampling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(12):355-361. [百度学术]
班海娟.Kevlar一体化拉绳-取芯软袋结构设计及紫外防护[D].哈尔滨:哈尔滨工业大学,2015. [百度学术]
BAN Haijuan. Structure design of integrated rope‑coring soft bag and ultravioletv protection [D]. Harbin: Harbin Institute of Technology, 2015. [百度学术]
胡翔凯.表镶CBN钻头研制及其岩石钻进负载特性实验研究[D].哈尔滨:哈尔滨工业大学,2015. [百度学术]
HU Xiangkai. Development of surface set CBN drilling bit and experimental study of rock drilling load characteristics [D]. Harbin: Harbin Institute of Technology, 2015. [百度学术]
史迎利,赵振.关于月壤钻进的动力学特性研究[C]//第九届全国多体系统动力学暨第四届全国航天动力学与控制学术会议.武汉,2015. [百度学术]
SHI Yingli, ZHAO Zhen. Research on the dynamic characteristics of lunar soil drilling[C]//The 9th National Multibody System Dynamics and the 4th National Conference on Aerospace Dynamics and Control. Wuhan, 2015. [百度学术]
马亮.深层采样全过程月壤样品层理保持特性分析[D]. 哈尔滨:哈尔滨工业大学,2015. [百度学术]
MA Liang. Analysis on maintaining stratification retention characteristics in the entire sampling process for deep lunal regolith [D]. Harbin: Harbin Institute of Technology, 2015. [百度学术]
田野.双螺旋阻隔式月壤取芯钻具设计及其性能研究[D].哈尔滨:哈尔滨工业大学,2015. [百度学术]
TIAN Ye. Study on performance and design of the double spiral auger and barrier‑type lunar soil coring drill[D]. Harbin: Harbin Institute of Technology, 2015. [百度学术]
高阳.月壤钻取采样装置加载机构设计与研究[D].哈尔滨:哈尔滨工业大学,2015. [百度学术]
GAO Yang. Design and research of lunar soil drilling load mechanism[D]. Harbin: Harbin Institute of Technology, 2015. [百度学术]
张小丹.月壤钻取采样钻进导向机构设计与分析[D].哈尔滨:哈尔滨工业大学,2015. [百度学术]
ZHANG Xiaodan. Design and analysis of drilling guiding mechanism for drilling-sampling soil [D]. Harbin: Harbin Institute of Technology, 2015. [百度学术]
赵超.取芯软袋内翻提拉过程的相关分析与实验[D].天津 :天津工业大学,2016. [百度学术]
ZHAO Chao. Correlation analysis and experiment of the inward pulling process of the cored soft bag[D]. Tianjin: Tianjin Polytechnic University, 2016. [百度学术]
魏妹.月壤样品袋整形缠绕过程动力学仿真[D].大连:大连理工大学,2017. [百度学术]
WEI Mei. Dynamic simulation of lunar soil sample bag reshaping process [D]. Dalian: Dalian University of Technology, 2017. [百度学术]
张利新,刘天喜,张鼐,等.月壤钻取与整形过程中样品层理保持特性分析[J].航天器工程,2017,26(2):45-52. [百度学术]
ZHANG Lixin, LIU Tianxi, ZHANG Nai, et al. Analysis on stratification retention characteristics in lunar soil drilling and shaping process[J]. Spacecraft Engineering, 2017,26(2):45-52. [百度学术]
李鹏.月岩取心钻头及其低作用力高效能钻进特性研究[D].哈尔滨:哈尔滨工业大学, 2017. [百度学术]
LI Peng. Research on efficient drilling characteristic of lunar regolith coring bit with low acting force[D]. Harbin: Harbin Institute of Technology, 2017. [百度学术]
马如奇,姜水清,刘宾,等.月球采样机械臂系统设计及试验验证[J].宇航学报,2018,39(12):1315-1322. [百度学术]
MA Ruqi, JIANG Shuiqing, LIU Bin, et al. Design and verification of a lunar sampling manipulator system[J]. Journal of Astronautics, 2018,39(12):1315-1322. [百度学术]
刘德赟,王迎春,张鼐,等.月壤钻进加载机构的研制与控制性能研究[J].电子测量技术,2018,41(17):7-14. [百度学术]
LIU Deyun, WANG Yingchun, ZHANG Nai, et al. Development and control performance research of loading mechanism for lunar soil drilling[J]. Electronic Measurement Technology, 2018,41(17):7-14 [百度学术]
丁作伟.钻进取样用管状织物的成形及其回折抽拔行为的表征[D].上海:东华大学,2018. [百度学术]
DING Zuowei. The formation of tubular fabrics for drilling and sampling and its characterization of pull‑out behaviour[D]. Shanghai: Donghua University, 2018. [百度学术]
FINZI A, BERNELLI-ZAZZERA F, DAINESE C, et al. SD2—How to sample a comet[J]. Space Science Reviews, 2007,128:281-299. [百度学术]
RICHTER L, COSTE P, GROMOV V V, et al. Development and testing of subsurface sampling devices for the Beagle 2 Lander[J]. Planetary and Space Science, 2002,50:903-913. [百度学术]
LIU Y, WEINBERG B, MAVROIDIS C. Mechanical design and modelling of a robotic planetary drilling system[C]// ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2006. [百度学术]
NAGAOKA K, KUBOTA T, OTSUKI M, et al. Experimental analysis of a screw drilling mechanism for lunar robotic subsurface exploration[J]. Advanced Robotics, 2010,24:1127-1147. [百度学术]
张伟伟.蠕动掘进式潜入器潜入特性研究[D].哈尔滨:哈尔滨工业大学,2014. [百度学术]
ZHANG Weiwei. Research on penetrating characteristics of a creepy-boring penetrator[D]. Harbin: Harbin Institute of Technology, 2014. [百度学术]
BAR-COHEN Y, ZACNY K, BADESCU M, et al. The Auto‑Gopher—A wireline rotary‑percussive deep sampler[C]//Earth and Space 2016: Engineering for Extreme Environments, 2016. [百度学术]
BAR-COHEN Y, ZACNY K, BADESCU M, et al. Auto‑Gopher-2—Wireline deep sampler driven by percussive piezoelectric actuator and rotary EM motors[J]. Advances in Science and Technology, 2016,100:207-212. [百度学术]
ZHAO D, TANG D, XUYAN H, et al. Soil chip convey of lunar subsurface auger drill[J]. Advances in Space Research, 2016,57:2196-2203. [百度学术]
FULFORD P, JESSEN S, HARRIS C, et al. Sample acquisition, processing and handling systems for future Mars missions[J]. Acta Astronautica, 2007,61:1061-1065. [百度学术]
ZACNY K, COOPER G. Considerations, constraints and strategies for drilling on Mars[J]. Planetary and Space Science, 2006,54:345-356. [百度学术]
ZACNY K, BAR-COHEN Y, BRENNAN M, et al. Drilling systems for extraterrestrial subsurface exploration[J]. Astrobiology, 2008,8:665-706. [百度学术]
李大佛,殷参,雷艳,等.月球钻孔取心机具试验与钻进规程[J].地球科学,2016(9): 1611-1618. [百度学术]
LI Dafo, YIN Shen, LEI Yan, et al. Coring tests of core drilling tool and analysis of drilling parameters[J]. Earth Science, 2016,41(9):1611-1618. [百度学术]
谭松成.基于模拟月壤的螺旋钻进机理研究与事故分析[D].武汉:中国地质大学(武汉),2013. [百度学术]
TAN Songcheng. Study of auger drilling mechanism and failure analysis based on simulated lunar soil[D]. Wuhan: China University of Geosciences (Wuhan), 2013. [百度学术]
TAN S, DUAN L, GUO Z, et al. Theoretical derivation of the cuttings transportation trajectory for lunar sampling auger drilling[J]. International Journal of Rock Mechanics and Mining Sciences, 2016,86:204-209. [百度学术]
DUAN L, TAN S, GAO H. Study on auger drilling technology for sampling drilling in the lunar stimulants[J]. Procedia Engineering, 2014,73:212-217. [百度学术]