4/13/2025, 12:53:33 AM 星期日
冲击地压关键层远程区域水力压裂防治技术
CSTR:
作者:
作者单位:

中煤地质集团有限公司,北京 100040

中图分类号:

TD324


Control technology for critical rock burst formations by distant and large scale hydraulic fracturing
Author:
Affiliation:

China Coal Geology Group Co., Ltd., Beijing 100040, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对我国目前冲击地压防治工程人员身处冲击危险区域,无法实现区域先行、超前治理的局面,论文提出了矿井冲击地压关键层远程钻孔水力压裂防治技术。分析了我国冲击地压矿井的地质条件和近几年重大冲击地压灾害的特点,认为华北石炭—二叠系煤田和侏罗系煤田很多冲击地压煤矿煤层上覆地层,普遍发育厚层坚硬的砂岩关键层,能量的释放符合冲击地压形成的“3因素”理论。经论证,关键层脆性强,硬度大,易于压裂,利用水力压裂法解除地应力是合适的;井下长钻孔、地面深孔和地面导斜钻孔的施工技术和钻孔水力压裂技术已成熟,实现远程钻孔水力压裂区域性的防治冲击地压是可行的。工业性试验显示,井下长钻孔顺层分段水力压裂长度可达800 m,水压可达40 MPa,裂缝半径为40 m;地面垂直钻孔分段压裂深度可达3000 m,压裂段高>100 m,压力达80 MPa,裂缝半径为100~200 m;地面导斜钻孔水平顺层段长度达1000 m,压力达80 MPa,裂缝半径为100~150 m;压裂前后煤体应力或支架压力的检测数据对比显示,压裂后的应力较压裂前降低了10 MPa以上,满足区域治理的要求,钻孔远程水力压裂在防治冲击地压上较传统方法具有显著超前优势、区域优势、效率优势、安全优势和环保优势,可以做到冲击地压防治区段的无人化,满足区域先行、超前治理的国家要求。

    Abstract:

    In view of the situation that rock burst control workers still work in hazardous areas underground, and the requirement that regional control of rock burst goes ahead of underground works cannot be met, the technology for key formation treatment by distant hydraulic fracturing through boreholes to relieve rock burst is put forward. By analyzing the geological conditions in the coal mine threatened by rock bursts and the hazardous characteristics of rock bursts happened in the resent years, it is understood the critical rock burst formation of massive hard rock is commonly developed in the roof of the coalbed, and the energy release in rock burst hazards meets the requirements of the “3 factors” theory on rock burst in north China C-P coal field and Jurassic coal field. According to rock mechanic analysis, the hard and brittle critical formation is easy to fracture. The technology to release rock stress in the key formation by hydraulicly fracturing is suitable. Since drilling technologies for underground long boreholes, deep holes and directional holes from surface have been technically proven, distant rock burst control in large scale by hydraulic fracturing in long borehole is feasible. The industrial tests showed that underground long borehole can be stage?-fracture up to 800m at 40MPa with fracture half-length upto; the vertical borehole drilled from surface can be as deep as 3000m with fracture segment greater than 100m at hydraulic pressure of 80MPa with fracture half-length about 100~200m long; the surface directional borehole can be drilled wi the inseam section as long as 1000m with hydraulic up to 80MPa with fracture half-length about 100~150 m. Analysis showed the pressure on coal seam or on shelf after fracturing was about 10MPa less than that before fracturing. Compared with conventional methods, the technology for key formation treatment by distant hydraulic fracturing through boreholes to release rock burst distantly have many advantages in regional and ahead control, engineering efficiency, safety and environment protection. The unmanned condition in the area threatened by rock burst can be realized in the hazard controlling process, and the requirement of regional and ahead control can be met.

    参考文献
    [1] 庆新,李一哲,赵善坤,等.我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J].煤炭科学技术,2019,47(9):1-40.
    [2] 李鹏翔.煤层冲击地压防治技术现状研究[J].工业安全与环保,2020,46(5),44-49.
    [3] 马斌文.钻孔卸压防治冲击地压研究[D].北京:煤炭科学研究总院,2018.
    [4] 潘一山,肖永惠,李国臻.巷道防冲液压支架研究及应用[J].煤炭学报,2020,45(1):90-99.
    [5] 红普,吴拥政,何杰,等.深部冲击地压巷道锚杆支护作用研究与实践[J].煤炭学报,2015,40(10):2225-2233.
    [6] LI C C.A new energy absorbing bolt for rock support in high stress rock masses[J].International Journal of Rock Mechanics and Mining Sciences, 2010,47(3):396-404.
    [7] 吴拥政,付玉凯,何杰,等,深部冲击地压巷道“卸压一支护一防护"协同防控原理与技术[J].煤炭学报,2021,46(1):132-144.
    [8] Gidley J L, Holditch S A, Nierode D E, et al. Recent advances in hydraulic fracture[J]. Society Petroleum Engineering Monograph, 1989: 452-456.
    [9] 黄荣搏.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981(5): 62-74.
    [10] 余雄鹰,邢纪国,汪先迎.斜井的破裂压力和裂缝方位[J].江汉石油学院学报, 1994, 16(3):57-60.
    [11] 张广清,殷有泉,陈勉,等.射孔对地层破裂压力的影响研究[J].岩石力学与工程学报.2003,22(1):41-44.
    [12] C.E.Austin, R.E•Rose, SchuhF.J. Simultaneous multiple entry hydraulic fracture treatment of horizontal drilled well[J]. SPE, 18263: 811-825.
    [13] И.M.别秋克著.王秉权,王英敏译.瓦斯抽放[M].沈阳:东北工学院出版社,1956.
    [14] Bjerrum L, Andersen K H. In-situ measurement of later pressures in clay [C]//Proceeding of 5th European Conference on Soil Mechanics and Foundation Engineering. Madrid: 1972. 333-342.
    [15] Fukushima S. Hydraulic fracturing criterion in core of fill dams[R]. Report of Fujita Kogyo Technical Institute, 1986, 22: 131-136.
    [16] 黄炳香,赵兴龙,陈树亮,等.坚硬顶板水压致裂控制理论与成套技[J].岩石力学与工程学报,2017,36(12):2954-2970.
    [17] 吴拥政,康红普.煤柱留巷定向水力压裂卸压机理及试验[J].煤炭学报,2017,42(5):1130-1137.
    [18] 杨航宇,杜敬国.压裂工艺技术现状及新进展[J].兰州石化职业技术学院学报,2017(2):1-4.
    [19] 黄力,陶祖文,李海昆.致密砂岩气藏压裂工艺技术新进展[J].石油化工应用,2017,36(1):11-14.
    [20] 付玉坤,喻成刚,尹强,等,国内外页岩气水平井分段压裂工具发展现状与趋势[J].石油钻探工艺,2017,39(4):514-520.
    [21] 李国富,孟召平,张遂安.大功率充电电位法煤层气井压裂裂缝监测技[J].煤炭科学技术,2006,34(12): 53-55.
    [22] 李玉魁,张遂安.井温测井监测技术在煤层压裂裂缝监测中的应用[J].中国煤层气,2005,2(2):14-16.
    [23] 单大为,刘继生,吕秀梅,等.测试技术在水力压裂设计及压裂效果评价中的应用[J].测井技术,2006,30(4):357-360.
    [24] 朱权洁,肖术,王博,等.煤层水力压裂过程中的微震活动规律及其时频特征[J],煤炭科学技术,2018,(7)::33-46.
    [25] 齐庆新,潘一山,李海涛,等.煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J],煤炭学报,2020,45(5):1567-1584.
    [26] 潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.
    [27] 窦林名,李振雷,张敏.煤矿冲击地压灾害监测预警技术研究[J].煤炭科学技术,2016,44(7):41-46.
    [28] 谭云亮,郭伟耀,辛恒奇,等.煤矿深部开采冲击地压监测解危关键技术研究[J].煤炭学报,2019,44(1):160-172.
    [29] 潘俊锋,齐庆新,刘少虹,等.我国煤炭深部开采冲击地压特征、类型及分源防控技术[J].煤炭学报,2020,45(5):111-121.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄澎涛.冲击地压关键层远程区域水力压裂防治技术[J].钻探工程,2021,48(S1):187-194.
HUANG Pengtao. Control technology for critical rock burst formations by distant and large scale hydraulic fracturing[J]. Drilling Engineering, 2021,48(S1):187-194.

复制
分享
文章指标
  • 点击次数:364
  • 下载次数: 616
  • HTML阅读次数: 28
  • 引用次数: 0
历史
  • 收稿日期:2021-07-14
  • 最后修改日期:2021-07-14
  • 录用日期:2021-07-14
  • 在线发布日期: 2021-12-06
  • 出版日期: 2021-09-01
文章二维码