4/4/2025, 12:27:19 AM 星期五
水射流破碎联合CO2置换开采天然气水合物新工艺及实验研究
CSTR:
作者:
作者单位:

1.吉林大学建设工程学院,吉林 长春130026;2.自然资源部复杂条件钻采技术重点实验室,吉林 长春 130026

中图分类号:

P634;P744.4

基金项目:

国家自然科学基金项目“高压低温水射流作用下海底天然气水合物储层破岩过程与机理研究”(编号:41672361);吉林省科技厅国际合作项目“海洋天然气水合物置换开采关键技术研究”(编号:20170414044GH);吉林省省校共建项目-新能源专项“油页岩地下原位开发利用示范工程”(编号:SXGJSF2017-5)


New technology and experimental research on water jet crushing combined with CO2 replacement to exploit natural gas hydrate
Author:
Affiliation:

1.College of Construction Engineering, Jilin University, Changchun Jilin 130026, China;2.Key Laboratory of Drilling and Exploitation Technology in Complex Conditions of Ministry of Natural Resources, Changchun Jilin 130026, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文对目前开采天然气水合物的5种方法进行了归纳总结,重点分析了CO2置换开采以及固体开采法,并通过分析这2种开采方法的优劣势,提出了水射流冲蚀、破碎海洋天然气水合物储层联合CO2置换开采天然气水合物的新思路。水射流冲蚀、破坏水合物储层后形成的采空区能为CO2提供更好的储藏空间并提高其与储层的作用面积,提高置换效率;封存的CO2水合物也可以提高水合物储层的稳定性,具有良好的互补效应。实验结果表明,在整个置换过程中,含采空区储层CH4置换率为24.3%,CO2封存率为22.1%;完整储层CH4置换率为15.3%,CO2封存率为20.9%,置换率提升约59%,封存率提升约5.7%。采空区的作用主要体现在提升水合物置换介质的注入量上。

    Abstract:

    The five current methods of mining natural gas hydrates are summarized with focus on the analysis of CO2 replacement mining and solid mining methods, and by analyzing the advantages and disadvantages of the two mining methods, a new approach, by which water jets erodes and breaks ocean gas hydrates in combination with CO2 replacement, is proposed for the exploitation of natural gas hydrates, The mined-out area formed by erosion and breaking of water jets in the hydrate reservoir can provide better storage space for CO2, increase its interaction area with the reservoir, and improve the replacement efficiency. The stored CO2 hydrate can also increase the stability of the hydrate reservoir, providing good complementary effect. The experimental results show that during the entire replacement process, the CH4 replacement rate in the reservoir containing the mined-out area is 24.3%, and the CO2 storage rate is 22.1%; while the CH4 replacement rate in the intact reservoir is 15.3%, and the CO2 storage rate is 20.9%; indicating that the replacement rate increases about 59%, the storage rate increases about 5.7%. The function of the goaf is mainly reflected in increasing the injection volume of the hydrate replacement medium.

    参考文献
    [1] 赵云龙,孔庚,李卓然,等.全球能源转型及我国能源革命战略系统分析[J].中国工程科学,2021,23(1):15-23.
    [2] Sloan E D, Koh C A. Clathrate hydrates of natural gases, third ed[M]. 2007.
    [3] Dendy SE. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2013, 426 (6964): 353-363.
    [4] Boswell R, Yamamoto K, Lee S R, et al. Chapter 8—Methane hydrates[M]. Elsevier Ltd, 2014.
    [5] Collett T, Bahk J-J, Baker R, et al. Methane hydrates in nature—Current knowledge and challenges[J]. Journal of Chemical & Engineering Data, 2014, 60(2): 319-329.
    [6] 张旭辉,鲁晓兵,李鹏.天然气水合物开采方法的研究综述[J].中国科学:物理学, 2019(3):38-59.
    [7] Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies[J]. Geochemistry Geophysics Geosystems, 2017, 18(7): 2429-2445.
    [8] Mekala P, Babu P, Sangwai J S, et al. Formation and dissociation kinetics of methane hydrates in seawater and silica sand[J]. Energy & Fuels, 2014,28:2708-2716.
    [9] 思娜,安雷,邓辉,等.天然气水合物开采技术研究进展及思考[J].中国石油勘探,2016,21(5): 52-61.
    [10] GCF.tzgercdd,MJ Castaldi,Y Zhou. Large scale reactor details and results for the formation and decomposition of methane hydrates via thermal stimulation dissociation[J]. Journal of Petroleum Science and Engineering, 2012,95(1):19-27.
    [11] 夏志增,王学武,王厉强,等.热水吞吐开采水合物藏数值模拟研究[J].西南石油大学学报(自然科学版),2018,40(6):124-130.
    [12] Jin G, Xu T, Xin X, et al. Numerical evaluation of the methane production from unconfined gas hydrate-bearing sediment by thermal stimulation and depressurization in Shenhu Area, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2016,33:497-508.
    [13] 孙致学,朱旭晨,刘垒,等.联合深层地热甲烷水合物开采方法及可行性评价[J].海洋地质与第四纪地质,2019,39(2):146-156.
    [14] Mohammadi A H, Richon D. Phase equilibria of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol+NaCl) and (ethylene glycol+NaCl aqueous solutions[J]. Journal of Chemical Thermodynamics, 2012,44(1):26-30.
    [15] Mohammadi A H, Afzal W, Richon D. Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single NaCl, KCl, and CaCl2 aqueous solutions: Experimental measurements and predictions of dissociation conditions[J]. Journal of Chemical Thermodynamics, 2008,40(12):1693-1697.
    [16] Javanmardi J, Babaee S, Eslamimanesh A, et al. Experimental measurements and predictions of gas hydrate dissociation conditions in the presence of methanol and ethane-1,2-diol aqueous solutions[J]. Journal of Chemical & Engineering Data, 2013,57(5):1474-1479.
    [17] 唐良广,冯自平, 李小森,等.海洋渗漏型天然气水合物开采的新模式[J].能源工程,2006(1):15-18.
    [18] Yosuke, Matsukuma, Jun, et al. Inlet configuration of a recovery system for methane hydrate using gas lift[J]. Kagaku Kogaku Ronbunshu, 2007,33(6):599-605.
    [19] 窦斌,蒋国盛,秦明举,等.水力输送法开采海底浅层天然气水合物技术研究[J].地质与勘探,2009,45(4):427-430.
    [20] 徐海良,林良程,吴万荣,等.海底天然气水合物绞吸式开采方法研究[J].中山大学学报(自然科学版),2011,50(3):48-52.
    [21] 张旭辉,鲁晓兵.一种新的海洋浅层水合物开采法——机械-热联合法[J].力学学报,2016,48(5):1238-1246.
    [22] 高文爽,陈晨,房治强.高压热射流开采天然气水合物的数值模拟研究[J].天然气勘探与开发,2010,33(4):49-52.
    [23] 周守为,陈伟,李清平,等.深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J].中国海上油气,2017,29(4):1-8.
    [24] Xie Y, Zhu YJ, Zheng T, et al. Replacement in CH4-CO2 hydrate below freezing point based on abnormal self-preservation differences of CH4 hydrate[J]. Chemical Engineering Journal, 2021,403:126283.
    [25] Kan JY, Sun YF, Dong BC, et al. Numerical simulation of gas production from permafrost hydrate deposits enhanced with CO2/N2 injection[J]. Energy, 2021,221:119919.
    [26] Song Y, Cheng C, Zhao J, et al. Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods[J]. Applied Energy, 2015,145(may 1):265-277.
    [27] Gupta A, Aggarwal A. Gas hydrates extraction by swapping-depressurisation method[C]// Offshore Technology Conference—Asia, 2014.
    [28] Khlebnikov V N, Gushchin P A, Antonov S V, et al. Inhibition replacement methane recovery from gas hydrates: An experimental study[J]. Earth’s Cryosphere, 2018,22(2):39-49.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李子涵,陈晨,潘栋彬,等.水射流破碎联合CO2置换开采天然气水合物新工艺及实验研究[J].钻探工程,2021,48(S1):290-295.
LI Zihan, CHEN Chen, PAN Dongbin, et al. New technology and experimental research on water jet crushing combined with CO2 replacement to exploit natural gas hydrate[J]. Drilling Engineering, 2021,48(S1):290-295.

复制
分享
文章指标
  • 点击次数:396
  • 下载次数: 518
  • HTML阅读次数: 18
  • 引用次数: 0
历史
  • 收稿日期:2021-05-27
  • 最后修改日期:2021-05-27
  • 录用日期:2021-07-17
  • 在线发布日期: 2021-12-06
  • 出版日期: 2021-09-01
文章二维码