4/6/2025, 2:11:29 PM 星期日
套管定向钻井锁定器设计与仿真分析
作者:
作者单位:

1.中国地质科学院,北京 100037;2.中国地质大学(北京),北京 100083;3.中国地质科学院勘探技术研究所,河北 廊坊 065000;4.自然资源部定向钻井工程技术创新中心,河北 廊坊 065000

中图分类号:

P634.7;TE243

基金项目:

中国地质调查局地质调查项目(编号:DD20221721)


Design and simulation analysis of drill lock assembly for casing directional drilling
Author:
Affiliation:

1.Chinese Academy of Geological Sciences, Beijing100037, China;2.China University of Geosciences, Beijing100083, China;3.Institute of Exploration Techniques, CAGS, LangfangHebei065000, China;4.Technology Innovation Center for Directional Drilling Engineering, Ministry of Natural Resources,Langfang Hebbei065000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    套管定向钻井技术是一种新型定向钻井工艺方法,兼备套管钻井和定向钻井的优势,能够实现高效的定向钻井目标。锁定器作为套管定向钻井系统中的关键部件,其性能好坏将对钻井可靠性产生直接影响。本文设计了一种将锁定器活动机构部件全部密封的结构形式,对锁定器中的传扭和轴向限位进行承载力计算分析,采用两参数Mooney-Rivlin超弹性本构模型,对两端关键密封O形圈的装配间隙以及橡胶硬度的承受密封压力情况进行分析,研究表明,锁定器芯承受最大65011 N·m的制动扭矩时,单个传扭键承受10835 N·m的扭矩,应力为74.86 MPa,单个定位卡可承受184520 N的竖向承载力,应力为659 MPa,两者的应力均小于所使用材料的屈服强度930 MPa,锁定器的轴向承载能力和传扭性能均满足设计要求;配合间隙以及橡胶硬度均对O形圈密封性能产生影响,仿真结果表明,在所选公差配合范围内,O形圈表面接触压力均大于外界压力,能够实现有效密封,考虑到间隙越小,Mises应力和剪切应力也随之增大,过大的应力会使密封圈损坏,且不易装配,因此配合间隙选择大值;橡胶硬度越大O形圈的密封性能越好且在相同介质压力下O形圈的形变越小,通过数值模拟选择90 HA硬度的O形圈,可以满足锁定器的密封需求。

    Abstract:

    Casing directional drilling technology is a new type of directional drilling technology, which has the advantages of both casing drilling and directional drilling, and can achieve efficient directional drilling targets. As a key component in the casing directional drilling system, the performance of the locking device will have a direct impact on the drilling reliability. In this paper, a structural form is designed to seal all the parts of the moving mechanism of the lock, and the bearing capacity of the torque transfer and axial limit in the lock is calculated and analyzed. The two-parameter Mooney_Rivlin superelastic constitutive model is used to analyze the assembly clearance of the key seal O-rings at both ends and the sealing pressure of the rubber hardness. When the locking core is subjected to the maximum braking torque of 65011N·m, a single torsion key is subjected to the torque of 10835N·m with a stress of 74.86MPa, and a single positioning card can withstand the vertical bearing capacity of 184520N with a stress of 659MPa, both of which are less than the yield strength of the used material of 930MPa. The axial bearing capacity and torsional performance of the lock meet the design requirements. Mises stress and shear stress will increase when the gap is smaller. Excessive stress will damage the seal ring and make it difficult to assemble. The simulation results show that the contact pressure on the surface of the O-ring is greater than the external pressure within the selected tolerance range. Therefore, the fit gap is selected with large value; The greater the rubber hardness, the better the sealing performance of the O-ring and the smaller the deformation of the O-ring under the same medium pressure. By numerical simulation, the O-ring with 90HA hardness can meet the sealing requirements of the lock.

    参考文献
    [1] 崔淑英,牛庆磊,宋刚,等.套管钻井技术优势和钻具组合分析[J].钻采工艺,2023,46(S1):30-34.
    [2] 闫循彪.套管定向钻井开始在海上应用[J].石油钻探技术,2006,34(4):29.
    [3] 黄志潜.再谈套管钻井技术及其装备[J].国外石油机械,1999(1):62-64.
    [4] 李林涛,雷雨.套管定向钻井技术及其应用[J].重庆科技学院学报(自然科学版),2010,12(5):72-75.
    [5] WARREN T, LESSO B. Casing drilling directional wells: OTC, 2005.
    [6] 国内首口全过程套管定向钻井顺利完钻[J].中外能源,2023,28(S1):91.
    [7] BEAUMONT E, De CREVOISIER L, BAQUERO F, et al. First retrievable directional casing while drilling (DCwD) application in peruvian fields generates time reduction and improves drilling performance preventing potential non-planned downtime[J]. SPE, 2010.
    [8] 米雄伟.安装状态的O形橡胶密封圈非线性有限元分析[J].液压与气动,2022,46(12):18-23.
    [9] 樊智敏,李龙,王启林.深海高压环境下O形密封圈密封性能分析[J].机电工程,2019,36(2):131-135.
    [10] 迟晓宁,郭学平,陈张斌,等.基于ANSYS的O形圈活动量对密封性能影响探究[J].润滑与密封,2023,48(3):96-102.
    [11] 赵敏敏,黄乐,张岐,等.基于Ansys的O形橡胶密封圈密封性能及可靠性研究[J].橡胶工业,2020,67(2):131-134.
    [12] 危银涛,杨挺青,杜星文.橡胶类材料大变形本构关系及其有限元方法[J].固体力学学报,1999(4):281-289.
    [13] MOONEY M. A Theory of Large Elastic Deformation[J]. Journal of Applied Physics, 1940,11(9):582-592.
    [14] 邓涛,赵树高,王伟.橡胶Mooney-Rivlin模型中材料常数的确定[J].特种橡胶制品,2004(4):8-10.
    [15] 刘萌,王青春,王国权.橡胶Mooney-Rivlin模型中材料常数的确定[J].橡胶工业,2011,58(4):241-245.
    [16] GENT A N. On the relation between indentation hardness and Young’s modulus[J]. Rubber Chemistry and Technology, 1958,31(4):896-906.
    [17] LIU D, YUN F, JIAO K, et al. Structural Analysis and Experimental Study on the Spherical Seal of a Subsea Connector Based on a Non-Standard O-Ring Seal[J]. Journal of Marine Science and Engineering, 2022,10(3):404.
    [18] HUANG Y, HSU H. Numerical simulation and experimental validation of novel hyperelastic micro-motion manipulator for water conserving device[J]. Microsystem Technologies, 2018,24:3329-3339.
    [19] 陈宏举,运飞宏,侯广信,等.水下柔性连接器的O形圈球面密封性能分析[J].润滑与密封,2023,48(9):152-157.
    [20] 孙远韬,袁林栋,朱伟泳,等.旋转动密封系统中丁腈橡胶O形圈的时效研究[J].润滑与密封,2020,45(11):36-40.
    [21] 唐斌,陈铭亮,王舒,等.作动筒用O形圈高压工况下动/静密封特性研究[J].机械研究与应用,2022,35(6):48-51.
    [22] 李强,王东辉,张伟.航空液压作动器O形圈静密封性能及可靠性有限元分析[J].液压与气动,2018(4):69-73.
    [23] 刘兴玉,张新奇,余巍,等.O形圈密封设计[J].液压气动与密封,2013,33(6):73-75.
    [24] 加闯.液压摆缸密封的疲劳寿命研究[D].武汉:武汉科技大学,2019.
    [25] 陈杭凯.双钻头自平衡钻进系统的结构设计与试验研究[D].长春:吉林大学,2021.
    [26] 何军.液压缸活塞密封性能的有限元分析[J].装备制造技术, 2016(1):237-239.
    [27] SCHELLER J, BAUR P J. Characterization of leakage, clamping force and retaining force of reusable sealing frame with elastomer O-ring for thin plasma polymeric coated thermoplastic polyester-ether films[J]. Vacuum, 2021,192:110501.
    相似文献
    引证文献
引用本文

朱明享,宋刚,张欣,等.套管定向钻井锁定器设计与仿真分析[J].钻探工程,2024,51(S1):178-186.
ZHU Mingxiang, SONG Gang, ZHANG Xin, et al. Design and simulation analysis of drill lock assembly for casing directional drilling[J]. Drilling Engineering, 2024,51(S1):178-186.

复制
分享
文章指标
  • 点击次数:19
  • 下载次数: 65
  • HTML阅读次数: 20
  • 引用次数: 0
历史
  • 收稿日期:2024-08-06
  • 最后修改日期:2024-08-06
  • 录用日期:2024-08-15
  • 在线发布日期: 2024-11-08
文章二维码