4/6/2025, 7:09:34 PM 星期日
极地钻井液冷却用板式换热器设计及换热性能模拟研究
CSTR:
作者:
作者单位:

1.中国地质大学(北京)工程技术学院,北京 100083;2.极地地质与海洋矿产教育部重点实验室,北京 100083

中图分类号:

P634

基金项目:

国家重点研发计划项目“南极冰下复杂地质环境多工艺钻探理论与方法”课题四“多工艺极地钻探装备研发与系统集成”(编号:2021YFA0719104);中央高校基本科研业务经费项目“可回收式热融钻具孔内融水与周围冰层传热机理”(编号:2-9-2021-017)


Design of a plate heat exchanger for cooling drilling fluid in polar regions and numerical simulation on its heat transfer performance
Author:
Affiliation:

1.School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;2.Key Laboratory of Polar Geology and Marine Mineral Resources (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [15]
  • | | |
  • 文章评论
    摘要:

    在极地开展冰下基岩取心钻探,对研究冰下地质构造、揭示冰盖演化历史、评估未来气候变化等均有重要的意义。在极地冰下基岩钻探过程中,钻井液在孔底循环后温度可能升高至0 ℃以上,进而在上返过程中融化冰孔孔壁,导致井壁失稳,甚至引发卡钻事故。为此,有必要研发极地钻井液冷却系统,在地表将钻井液冷却至较低的温度后再注入孔内,进而使钻井液在循环过程中始终保持在0 ℃以下。换热器是钻井液冷却系统的核心部件。本文选用板式换热器做为钻井液的换热部件,采用平均温差法确定了板式换热器的换热面积和基本参数,然后使用COMSOL Multiphysics 6.0软件对板式换热器的换热性能进行了数值模拟。研究结果表明,该换热器可将钻井液冷却至-4~-3 ℃;此外,模拟结果表明,钻井液的出口温度随载冷剂注入温度的降低和载冷剂流量的增大而降低;钻井液的类型对换热器的换热性能有较大影响,而换热板片的材质对换热器的换热效果影响不大。

    Abstract:

    It is of great significance to carry out subglacial bedrock core drilling in polar regions for studying subglacial geology, revealing the evolutionary history of ice sheets and evaluating future climate change. The temperature of the drilling fluid may rise above 0°C after circulating at the bottom of the hole When drilling subglacial bedrock in polar regions, which may cause the wall of the icy hole to be melted during upward return, resulting in the instability of the wall, and even triggering the stuck drilling accident. It is necessary to design a drilling fluid cooling system that cooling the drilling fluid to a lower temperature before injecting it into the borehole, thereby keeping the drilling fluid below 0℃ at all times during circulation. The heat exchanger is the core component of the drilling fluid cooling system. The paper selects plate heat exchanger as the heat exchange component to cool drilling fluid, and uses the average temperature difference method to determine the heat exchange area and basic parameters, then numerical simulation of the heat exchange performance of the plate heat exchanger is using COMSOL Multiphysics 6.0 software. The research results show that the heat exchanger can cool the drilling fluid to -4~-3℃. Further, the simulation results show that the outlet temperature of the drilling fluid decreases with the decrease of the carrier refrigerant injection temperature and the increase of the carrier refrigerant flow rate, the type of drilling fluid has a great influence on the heat transfer performance of the heat exchanger, while the material of the heat exchanger plate has little influence.

    参考文献
    [1] 秦大河,任贾文.南极冰川学[M].北京:科学出版社,2001.QIN Dahe, REN Jiawen. Antarctic Glaciology[M]. Beijing: Science Press, 2001.
    [2] Bo S, Siegert M J, Mudd S M, et al. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet[J]. Nature, 2009,459(7247):690-693.
    [3] Talalay P G. Exploration of Gamburtsev Subglacial Mountains (East Antarctica): Background and Plans for the Near Future[J]. Geography, Environment, Sustainability, 2014,7(1):5-15.
    [4] Spector P, Stone J, Pollard D, et al. West Antarctic sites for subglacial drilling to test for past ice-sheet collapse[J]. The Cryoshere, 2018,12(8):2741-2757.
    [5] Dutton A, Carlson A E, Long A J, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015,349(6244).
    [6] Treshnikov A F. Vtoraya kontinental''naya ekspeditsiya 1956-1958 gg. Obshchee opisanye[R]. 1960.
    [7] Ueda H T, Garfield D E. Drilling through the Greenland Ice Sheet[R]. Hanover, USA: 1968.
    [8] Gow A J, Meese D A. Nature of basal debris in the GISP2 and Byrd ice cores and its relevance to bed processes[J]. Annals of Glaciology, 1996,22:134-140.
    [9] Steig E J, Morse D L, Waddington E D, et al. Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica[J]. Geografiska Annaler Series A-Physical Geography, 2000,82A(2-3):213-235.
    [10] Boeckmann G V, Gibson C J, Kuhl T W, et al. Adaptation of the Winkie Drill for subglacial bedrock sampling[J]. Annals of Glaciology, 2021,62(84):109-117.
    [11] Kuhl T, Gibson C, Johnson J, et al. Agile Sub-Ice Geological (ASIG) Drill development and Pirrit Hills field project[J]. Annals of Glaciology, 2021,62(84):53-66.
    [12] Goodge J W, Severinghaus J P, Johnson J, et al. Deep ice drilling, bedrock coring and dust logging with the Rapid Access Ice Drill (RAID) at Minna Bluff, Antarctica[J]. Annals of Glaciology, 2021,62(84):1-16.
    [13] Goodge J W, Severinghaus J P. Rapid Access Ice Drill: a new tool for exploration of the deep Antarctic ice sheets and subglacial geology[J]. Journal of Glaciology, 2016,62(236):1049-1064.
    [14] Talalay P G, Li X, Zhang N, et al. Antarctic subglacial drilling rig: Part II. Ice and Bedrock Electromechanical Drill (IBED)[J]. Annals of Glaciology, 2021,62(84):12-22.
    [15] Talalay P, Li Y, Augustin L, et al. Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica[J]. The Cryosphere, 2020,14(11):4021-403
    [16] Braddock S, Venturelli R A, Nicholset K, et al. Lessons learned from shallow subglacial bedrock drilling campaigns in Antarctica[J]. Annals of Glaciology, 2024:1-11.
    [17] 侯雨田.板翅式换热器翅片通道流场的数值模拟及结构改进[D].西安:陕西科技大学,2019.HOU Yutian. Numerical simulation and structural optimization of channel flow field in plate-fin heat exchanger[D]. Xi’an: Shaanxi University of Science and Technology, 2019.
    [18] 谭蔚.化工设备设计基础(第4版)[M].天津:天津大学出版社,2022.TAN Wei. Chemical Equipment Design Basis (4th Edition) [M]. Tianjin: Tianjin University Press, 2022.
    [19] 吴丹.板式换热器板片换热和阻力性能的数值模拟[D].济南:山东大学,2014.WU Dan. Numerical simulation on plate heat transfer and resistance characteristics of plate heat exchangers[D]. Jinan: Shandong University, 2014.
    [20] 邹龙辉,朱伟平,冯国超,等.紧凑式低温换热器研究进展[J].低温与超导,2015,43(2):14-19.ZOU Longhui, ZHU Weipin, FENG Guochao, et al. Development of the compact heat exchangers in cryogenic engineering[J]. Cryogenics and Superconductivity, 2015,43(2):14-19.
    [21] 陈宗毅,赵先锋,胡洪娟,等.人字板型钎焊板式换热器对比分析[J].机械设计与制造,2015(2):206-209.CHEN Zongyi, ZHAO Xianfeng, HU Hongjuan, et al. Comparative analysis of the chevron-plate brazed plate heat exchanger[J]. Machinery Design and Manufacture, 2015(2):206-209.
    [22] 韩俊杰,韩丽丽,徐会文,等.极地冰层取心钻进超低温钻井液理论与试验研究[J].探矿工程(岩土钻掘工程),2013,40(6):23-26.HAN Junjie, HAN Lili, XU Huiwen, et al. Theoretical and experimental research on the ultra-low temperature drilling fluids for the polar ice coring[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2013,40(6):23-26.
    [23] 余建祖,谢永奇,高红.换热器原理与设计[M].北京:北京航空航天大学出版社,2019.YU Jianzu, XIE Yongqi, GAO Hong. Heat exchanger principle and design[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2019.
    [24] 张仲彬.换热表面污垢特性的研究[D].保定:华北电力大学(保定),2009.ZHANG Zhongbin. Study on fouling characteristics of heat transfer surface[D]. Baoding: North China Electric Power University (Baoding), 2009.
    [25] 吴学慧.城市污水流动与换热及污垢增长特性研究[D].哈尔滨:哈尔滨工业大学,2008.WU Xuehui. Research on characteristic of flow and heat transfer and development of fouling of city sewage[D]. Harbin: Harbin Institute of Technology, 2008.
    [26] 曾伟平.板式换热器换热和压降的性能研究[D].上海:上海交通大学,2009.ZENG Weipin. Study on heat transfer and pressure drop performance of plate heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2009.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王祖凡,李亚洲,杨甘生,等.极地钻井液冷却用板式换热器设计及换热性能模拟研究[J].钻探工程,2024,51(5):58-66.
WANG Zufan, LI Yazhou, YANG Gansheng, et al. Design of a plate heat exchanger for cooling drilling fluid in polar regions and numerical simulation on its heat transfer performance[J]. Drilling Engineering, 2024,51(5):58-66.

复制
分享
文章指标
  • 点击次数:55
  • 下载次数: 2143
  • HTML阅读次数: 56
  • 引用次数: 0
历史
  • 收稿日期:2024-07-31
  • 最后修改日期:2024-07-31
  • 录用日期:2024-08-14
  • 在线发布日期: 2024-10-08
文章二维码