4/4/2025, 11:58:12 PM 星期五
载体保护下诱导碳酸钙对水泥砂浆微裂隙的修复作用
CSTR:
作者:
作者单位:

1.成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059;2.中国地质调查局军民融合地质调查中心,四川 成都 610036;3.四川省地质工程勘察院集团有限公司,四川 成都 610072

中图分类号:

TU525.9

基金项目:

国家自然科学基金项目(编号:42272363);四川省科技计划项目(编号:2023NSFSC0432);地质灾害防治与地质环境保护国家重点实验室自主研究课题(编号:SKLGP2023Z019)


Repair mechanism of induced calcium carbonate on microcracks of cement mortar under carrier protection
Author:
Affiliation:

1.State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection of Chengdu;University of Technology, ChengduSichuan610059, China;2.Civil-Military Integration Geological Survey Center of China Geological Survey, ChengduSichuan610036, China;3.Sichuan Geological Engineering Survey Institute Group Co., Ltd., ChengduSichuan610072, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    微生物诱导碳酸钙沉淀可有效填补和修复水泥浆凝结过程中难以避免的水化裂隙,提高水泥石力学强度和抗渗性能,从而可减少诱发的水泥微裂缝质量问题。文章以矿化性能良好的枯草芽孢杆菌为研究对象,通过菌种的活化与扩大培养、向水泥浆中不同方式的添加,测试和评价了不同工艺配方与养护条件下的水泥石力学和抗渗性能。结果表明:环境温度、pH值、钙源浓度分别是影响杆菌矿化能力的主要因素,水泥浆的碱性环境(pH值11~13)对杆菌的活性有明显的抑制作用,最大降低矿化能力达15.1%。多孔、吸附性好的页岩陶砂载体可有效降低碱性环境对杆菌活性的影响,相比于直接添加,载体附菌的添加方式可使水泥石抗压、抗折强度和抗渗压力分别提升11.5%、14.8%和33.3%。当菌液吸附率从0%增加到35%时,微生物水泥石的抗压、抗折强度和抗渗压力分别增加10.8%、47.0%以及25.0%。由此可知,研究的微生物微裂隙修复方法可有效提升水泥环力学和抗渗性能,结论可为固井水泥石质量提升和微生物水泥浆应用推广提供良好的指导和借鉴作用。

    Abstract:

    Microbial-induced calcium carbonate precipitation can effectively fill and repair the inevitable hydration cracks during the cement slurry consolidation process, enhancing the mechanical strength and impermeability of cement stone, thereby reducing many induced well cementing quality issues. This paper focuses on Bacillus subtilis with good mineralization properties, investigating the mechanics and impermeability performance of cement stone under different process formulations and curing conditions, after activation and expansion cultivation of bacterial strains and their addition to cement slurries in various ways. The results indicate that environmental temperature, pH, and calcium source concentration are the main factors affecting the mineralization ability of the bacteria. The alkaline environment of the cement slurry (pH:11~13) has a significant inhibitory effect on bacterial activity, with a maximum reduction in mineralization ability of 15.1%. Porous and adsorbent shale ceramic sand carriers can effectively mitigate the influence of alkaline environment on bacterial activity. Compared to direct addition, the addition of carrier+bacteria can respectively increase the compressive strength, flexural strength, and impermeability pressure of cement stone by 11.5%,14.8%,and 33.3%. When the adsorption rate of the bacteria solution increases from 0% to 35%, the compressive strength, flexural strength, and impermeability pressure of microbial cement stone increase by 10.8%, 47.0%, and 25.0% respectively. Therefore, the microbial cement slurry studied can effectively improve the mechanical and impermeability properties of cement stone, providing valuable guidance and reference for enhancing well cementing quality and promoting the application of microbial cement slurries.

    参考文献
    [1] Kurtis K E. Innovations in cement-based materials: Addressing sustainability in structural and infrastructure applications[J]. Mrs Bulletin, 2015,40(12):1102-1108.
    [2] Song X, Song X, Liu H, et al. Cement-based repair materials and the interface with concrete substrates: Characterization, Evaluation and Improvement[J]. Polymers, 2022,14(14857).
    [3] Kong W, Wei Y, Wang Y, et al. Development of micro and macro fracture properties of cementitious materials exposed to freeze-thaw environment at early ages[J]. Construction and Building Materials, 2021,271(121502).
    [4] Grudemo A. Microcracks, fracture mechanism, and strength of the cement paste matrix[J]. Cement and Concrete Research, 1979,9(1):19-33.
    [5] Wang K, Zheng M, Yan S, et al. Study on the influence mechanism of calcium carbonate particles on mechanical properties of microcrack cement[J]. Construction and Building Materials, 2024,411(134563).
    [6] Li H, Yang H, Li X. Investigation on the working performance of a non-dispersible grouting material for the crack repairment of underwater structures[J]. Construction and Building Materials, 2023,407(133558).
    [7] Yuan P, Zhang B, Yang Y, et al. Application of polymer cement repair mortar in underground engineering: A review[J]. Case Studies in Construction Materials, 2023,19(e02555).
    [8] Guo T, Liu K, Li X, et al. Effects of thermal treatment on the fracture behavior of rock-concrete bi-material specimens containing an interface crack[J]. Theoretical and Applied Fracture Mechanics, 2023,127(104071).
    [9] Jonkers H M, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010,36(2SI):230-235.
    [10] Fan Q, Fan L, Quach W, et al. Application of microbial mineralization technology for marine concrete crack repair: A review[J]. Journal of Building Engineering, 2023,69(106299).
    [11] Nguyen M, Fernandez C A, Haider M, et al. Toward self-healing concrete infrastructure: review of experiments and simulations across scales[J]. Chemical Reviews, 2023.
    [12] Wang J, Tang J, Chen D, et al. Intrinsic and extrinsic self-healing fiber-reinforced polymer composites: A review[J]. Polymer Composites, 2023,44(10):6304-6323.
    [13] Feng J, Yap X Y, Gao J, et al. Rapid self-sealing of macro cracks of cementitious composites by in-situ alginate crosslinking[J]. Cement and Concrete Research, 2023,165(107074).
    [14] Jonkers H M, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010,36(2SI):230-235.
    [15] Raza A, El Ouni M H, Khan Q U Z, et al. Sustainability assessment, structural performance and challenges of self-healing bio-mineralized concrete: A systematic review for built environment applications[J]. Journal of Building Engineering, 2023,66(105839).
    [16] Dharmabiksham B, Kavya C, Kapilan S. The experimental performance of durability and strength to repair for micro cracks in a self-healing bacterial concrete[J]. Materials Today: Proceedings, 2023.
    [17] Muhammad J B, Shehu D, Usman S, et al. Biodegradation potential of 2,4 dichlorophenoxyacetic acid by Cupriavidus campinensis isolated from rice farm cultivated soil[J]. Case Studies in Chemical and Environmental Engineering, 2023,8:100434.
    [18] Wang D, Guan F, Feng C, et al. Review on Microbially Influenced Concrete Corrosion[J]. Microorganisms, 2023,11(20768).
    [19] Liu Y, Ali A, Su J, et al. Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation[J]. Science of the Total Environment, 2023,860(160439).
    [20] Zhao C, Toufigh V, Zhang J, et al. Enhancing biomineralization process efficiency with trained bacterial strains: A technical perspective[J]. Biogeotechnics, 2023,1(2):100017.
    [21] Zheng Y, Wang P, Wei Y, et al. Untargeted metabolomics elucidated biosynthesis of polyhydroxyalkanoate by mixed microbial cultures from waste activated sludge under different pH values[J]. Journal of Environmental Management, 2023,331(117300).
    [22] Ge J, Xu F, Wei H, et al. The Influence Mechanism of Interfacial Characteristics between CSH and Montmorillonite on the Strength Properties of Cement-Stabilized Montmorillonite Soil[J]. Materials, 2023,16(714122).
    [23] Jaworska B, Stanczak D, Lukowski P. The Influence of Waste Perlite Powder on Selected Mechanical Properties of Polymer-Cement Composites[J]. Buildings, 2024,14(1811).
    [24] Li Y, Wang Q, Sun J, et al. Properties and reaction mechanism of magnesium phosphate cement modified by calcium lactate[J]. Construction and Building Materials, 2024,419(135565).
    [25] Xing J, Zhou Y, Peng Z, et al. The influence of different kinds of weak acid salts on the macro-performance, micro-structure, and hydration mechanism of the supersulfated cement[J]. Journal of Building Engineering, 2023,66(105937).
    [26] Palanisamy M. Bacterial concrete: A review[J]. International Journal of Civil Engineering and Technology, 2017,8:588-594.
    [27] Mat Yajit N L, Fazlin Hashim N H, Illias R M, et al. Expression and biochemical characterization of a novel thermostable alkaline beta-1,3-1,4-glucanase (lichenase) from an alkaliphilic Bacillus lehensis G1[J]. Protein Expression and Purification, 2024,219.
    [28] Padan E, Bibi E, Ito M, et al. Alkaline pH homeostasis in bacteria: New insights[J]. Biochimica Et Biophysica Acta-Biomembranes, 2005,1717(2):67-88.
    [29] Yang J, Duan X, Qiu J, et al. Application of superabsorbent polymer hydrogel to crack self-sealing of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2023,51(0454-5648(2023)51:11<3015:GXSSZS>2.0.TX;2-J11):3015-3024.
    [30] Gong Y, Niu Q, Liu Y, et al. Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review[J]. Environmental Pollution, 2022,314(120232).
    [31] Feng C, Zong X, Cui B, et al. Application of carrier materials in self-healing cement-based materials based on microbial-induced mineralization[J]. Crystals, 2022,12(7976).
    [32] Li S, Tang X, Sun Z. Study on the mechanics capability of high performance concrete mixed with fly ash II[J]. Concrete, 2011(1002-3550(2011)4<86:CJFMHG>2.0.TX;2-Z4):86-88.
    [33] Su Y, Jin P. Application of encapsulated expanded vermiculites as carriers of microorganisms and nutrients in self-repairing concrete[J]. Biochemical Engineering Journal, 2022,187(108672).
    [34] Sengul O, Azizi S, Karaosmanoglu F, et al. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete[J]. Energy and Buildings, 2011,43(2-3):671-676.
    [35] 司亚余.活性炭储能相变混凝土制备与力学性能试验研究[D].淮南:安徽理工大学,2020.
    [36] 刘宜思,庞建勇,姜平伟,等.电厂稻壳灰水泥砂浆流动度及力学性能研究[J].安徽理工大学学报(自然科学版),2020,40(6):54-60.
    [37] Cifuentes H, Leiva C, Medina F, et al. Effects of fibres and rice husk ash on properties of heated HSC[J]. Magazine of Concrete Research, 2012,64(5):457-470.
    [38] Yang W, He Z, Yang Y. Experimental study on the influence of ceramist properties compressive strength of shale ceramist concrete[C]//Zhangjiajie, China: Trans Tech Publications, 2012.
    [39] Korsten L, Cook N. Optimizing culturing conditions for Bacillus subtilis[J]. South African Avocado Growers’ Association Yearbook, 1996,19:54-58.
    [40] Jamil B, Hasan F, Hameed A, et al. Isolation of bacillus subtilis MH-4 from soil and its potential of polypeptidic antibiotic production[J]. Pakistan Journal of Pharmaceutical Sciences, 2007,20(1):26-31.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑明明,张亚伟,胡云鹏,等.载体保护下诱导碳酸钙对水泥砂浆微裂隙的修复作用[J].钻探工程,2024,51(S1):42-50.
ZHENG Mingming, ZHANG Yawei, HU Yunpeng, et al. Repair mechanism of induced calcium carbonate on microcracks of cement mortar under carrier protection[J]. Drilling Engineering, 2024,51(S1):42-50.

复制
分享
文章指标
  • 点击次数:27
  • 下载次数: 576
  • HTML阅读次数: 17
  • 引用次数: 0
历史
  • 收稿日期:2024-07-27
  • 最后修改日期:2024-07-27
  • 录用日期:2024-08-02
  • 在线发布日期: 2024-11-08
文章二维码