4/5/2025, 3:36:24 PM 星期六
基于扩展有限元的现场尺度水力裂缝扩展机制模拟研究
CSTR:
作者:
作者单位:

1.中国矿业大学资源与地球科学学院,江苏 徐州 221116;2.中国地质科学院,北京 100037;3.中国地质大学(武汉)工程学院,湖北 武汉 430074

中图分类号:

TE37;P634

基金项目:

国家自然科学基金项目(编号:42102353);中国科协青年托举人才工程项目(编号:2023QNRC001);中国矿业大学基本科研业务费项目——青年科技基金(编号:2023-00030)


Simulation research of field-scale hydraulic fracture extension mechanism based on XFEM
Author:
Affiliation:

1.School of Resources and Geosciences, China University of Mining and Technology, Xuzhou Jiangsu 221116, China;2.Chinese Academy of Geological Sciences, Beijing 100037, China;3.Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan Hubei 430074, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    干热岩储层水力压裂形成复杂缝网对于建设增强型地热系统(EGS)至关重要。为了深入认识干热岩储层水力裂缝扩展机制,揭示工程参数和地质参数对水力裂缝扩展的影响规律,本文以青海共和盆地某干热岩储层为研究对象,基于扩展有限元(XFEM)数值模拟软件ABAQUS展开研究,建立现场尺度的干热岩储层模型,实现热流固耦合分析水力裂缝的扩展机制。结果显示:正断型应力状态下,裂缝发生了很明显的朝向Z轴的转向,走滑型应力状态下,裂缝扩展主要沿水平方向,有轻微倾向于Z轴转向的趋势,逆冲型应力状态下,裂缝沿水平方向扩展;随着弹性模量的增大,裂缝的起裂压力减小,裂缝延伸的注水压力也减小,弹性模量越大裂缝起裂的时间越早,泊松比越大水力裂缝的破裂压力越大,破裂压力整体呈现出正断型>走滑型>逆冲型;随着温度的升高,水力裂缝破裂压力减小,大约降低2~3 MPa左右,3个应力状态下都呈现出相同的趋势。本文丰富了干热岩水力裂缝扩展的数值模拟手段,相关研究成果可为干热岩储层中水力压裂扩展预测与不同参数对其的影响分析提供技术支撑。

    Abstract:

    Hydraulic fracturing of hot dry rock(HDR) reservoirs to form a complex network of seams is essential for the construction of enhanced geothermal systems (EGS). In order to deeply understand the mechanism of hydraulic fracture extension in HDR reservoirs and reveal the influence of engineering and geological parameters on hydraulic fracture extension, in this paper, a HDR reservoir in the Gonghe Basin of Qinghai Province is taken as the research object, and based on the extended finite element method (XFEM) numerical simulation software ABAQUS, a field-scale HDR reservoir model is established to realize the thermo-hydro-mechanical coupling and to analyze the extension mechanism of the hydraulic fracture. The results show that: (1) In the normal fracture-type stress state, the crack undergoes a very obvious turning toward the Z-axis, in the strike-slip-type stress state, the crack expands mainly along the horizontal direction with a slight tendency to turn toward the Z-axis, and in the thrust-type stress state, the crack expands along the horizontal direction. (2) With the increase of elastic modulus crack initiation pressure decreases, the injection pressure of crack extension also decreases; the larger the elastic modulus the earlier the crack initiation time; the larger the Poisson ratio the greater the rupture pressure of hydraulic cracks; the rupture pressure as a whole shows a normal fracture-type>strike-slip-type>thrust-type. (3) The hydraulic fracture rupture pressure decreases with the increasing temperature, by about 2~3MPa or so, showing the same trend for all three stress states. This paper inriches the numerical simulation methods of hydraulic fracturing extention for HDR, the relavant research results can also provides technical supports for the prediction of the hydraulic fracturing extention and the influences affected by different perameters for HDR reservoirs.

    参考文献
    [1] 王贵玲,张薇,梁继运,等.中国地热资源潜力评价[J].地球学报,2017,38(4):448-459.WANG Guiling, ZHANG Wei, LIANG Jiyun, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017,38(4):448-459.
    [2] 周韬,范永林,陈家嵘,等.热损伤花岗岩力学劣化特性及损伤演化规律研究[J].矿业科学学报,2024,9(3):351-360.ZHOU Tao, FAN Yonglin, CHEN Jiarong, et al. Study on the mechanical degradation characteristics and damage evolution of thermally damaged granite[J]. Journal of MiningScience and Technology, 2024,9(3):351-360.
    [3] 解经宇,王丹,李宁,等.干热岩压裂建造人工热储发展现状及建议[J].地质科技通报,2022,41(3):321-329.XIE Jingyu, WANG Dan, LI Ning, et al. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology, 2022,41(3):321-329.
    [4] Xie J Y, Li L, Wen D G, et al. Experiments and analysis of the hydraulic fracture propagation behaviors of the granite with structural planes in the Gonghe basin[J]. Acta Geologica Sinica-English Edition, 2021, 95(6): 1816-1827.
    [5] 孔鹏,任广聪,薄海江,等.ABAQUS中不同断层带的煤层地应力场反演[J].西安石油大学学报(自然科学版),2022,37(3):1-8.KONG Peng, REN Guangcong, BO Haijiang, et al. Influence of different fault treatment modes on simulation result of In-situ stress distribution in coalbed using ABAQUS[J]. Journal of Xi’an Shiyou University(Natural Science), 2022,37(3):1-8.
    [6] 方淑君,王涛,聂念从,等.基于ABAQUS标准扩展有限元法的不良裂缝构型影响分析[J].东北大学学报(自然科学版),2020,41(11):1646-1652,1666.FANG Shujun, WANG Tao, NIE Niancong, et al. Analysis of poor crack configuration influence based on ABAQUS standard extended finite element method[J]. Journal of Northeastern University(Natural Science), 2020,41(11):1646-1652,1666.
    [7] 雷浩然.基于ABAQUS的三维水力压裂裂缝扩展模拟研究[J].云南化工,2021,48(1):34-37.LEI Haoran. Simulation of 3D hydraulic fracturing fracture propagation based on ABAQUS[J]. Yunnan Chemical Technology, 2021,48(1):34-37.
    [8] 张汝生,王强,张祖国,等.水力压裂裂缝三维扩展ABAQUS数值模拟研究[J].石油钻采工艺,2012,34(6):69-72.ZHANG Rusheng, WANG Qiang, ZHANG Zuguo, et al. Research of ABAQUS numerical simulation of 3D fracturepropagation in hydraulic fracturing process[J]. Oil Drilling & Production Technology, 2012,34(6):69-72.
    [9] 寇园园,孙晨,魏奔驰.基于ABAQUS裂缝相互作用规律研究[J].石油化工应用,2022,41(4):20-25.KOU Yuanyuan, SUN Chen, WEI Benchi. Study on interaction law of fractures based on ABAQUS[J]. Petrochemical Industry Application, 2022,41(4):20-25.
    [10] 龚迪光,曲占庆,李建雄,等.基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J].岩土力学,2016,37(5):1512-1520.GONG Diguang, QU Zhanqing, LI Jianxiong, et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics, 2016,37(5):1512-1520.
    [11] 王伟,付豪,邢林啸,等.基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为[J].地球科学,2021,46(10):3509-3519.WANG Wei, FU Hao, XING Linxiao, et al. Crack propagation behavior of carbonatite geothermal reservoir rock mass based on extended finite element method[J]. Earth Science, 2021,46(10):3509-3519.
    [12] 周鑫,刘向君,丁乙,等.考虑隔层效应的水力裂缝与天然裂缝相交模拟[J].油气藏评价与开发,2022,12(3):515-525.ZHOU Xin, LIU Xiangjun, DING Yi, et al. Simulation of intersecting hydraulic fractures with natural fractures considering layer barrier effect[J]. Reservoir Evaluation and Development, 2022,12(3):515-525.
    [13] 宋进鑫,郁航,王雅亭,等.多级水力压裂应力阴影效应的数值分析[J].矿业科学学报,矿业科学学报,2024,9(3):475-482.SONG Jinxin, YU Hang, WANG Yating, et al. Numerical analysis of the stress shadowing effects in multistage hydrofracturing[J]. Journal of Mining Science and Technology, 2024,9(3):475-482.
    [14] 曹涵,朱珍德,周露明.非对称应力作用下干热岩水力压裂裂缝扩展机理研究[J].河南科学,2022,40(8):1244-1249.CAO Han, ZHU Zhende, ZHOU Luming. Crack propagation mechanism of hydraulic fracturing in hot dry rock under the influence of asymmetric stress[J]. Henan Science, 2022,40(8):1244-1249.
    [15] 冯国瑞,樊一江,王朋飞,等.基于离散元法的类岩石材料水力压裂裂缝扩展规律[J].煤炭学报,2024,49(5):2231-2246.FENG Guorui, FAN Yijiang, WANG Pengfei, et al. Fracture propagation law of hydraulic fracturing of rock-like materials based on discrete element method[J]. Journal of China Coal Society, 2024,49(5):2231-2246.
    [16] 解经宇,陆洪智,陈磊,等.龙马溪组层状页岩微观非均质性及力学各向异性特征[J].地质科技通报,2021,40(3):67-77.XIE Jingyu, LU Hongzhi, CHEN Lei, et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021,40(3):67-77.
    [17] Salehi S, Nygaard R. Full fluid-solid cohesive finite-element model to simulate near wellbore fractures[J]. Journal of Energy Resources Technology, 2015,137(1):012903.
    [18] Kumari W G P, Ranjith P G, Perera M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018,230:138-154.
    [19] Zhou C B, Wan Z J, Zhang Y, et al. Experimental study on hydraulic fracturing of granite under thermal shock[J]. Geothermics, 2018,71:146-155.
    [20] 翟梁皓,荀杨,苏博,等.基于粘结单元法的干热岩储层水力压裂数值模拟与参数优化[J].钻探工程,2024,51(2):23-31.ZHAI Lianghao, XUN Yang, SU Bo, et al. Numerical simulation and parameter optimization of hydraulic fracturing for hot dry rock reservoirs based on cohesive zone method[J]. Drilling Engineering, 2024,51(2):23-31.
    [21] 蒋亚峰,田英英,李小洋,等.基于cohesive单元海域天然气水合物储层水力压裂模拟[J].钻探工程,2023,50(1):18-25.JIANG Yafeng, TIAN Yingying, LI Xiaoyang, et al. Numerical simulation of hydrate reservoir hydraulic fracturing based on cohesive units[J]. Drilling Engineering, 2023,50(1):18-25.
    [22] 颜谢材,郑君,罗浩瀚,等.冷冲击作用下干热岩井井筒裂纹扩展数值模拟研究[J].钻探工程,2024,51(3):94-103.YAN Xiecai, ZHENG Jun, LUO Haohan, et al. Numerical simulation of wellbore fracture extension in hot dry rock wells under cold shock effect[J]. Drilling Engineering, 2024,51(3):94-103.
    [23] 温继伟,项天,朱茂,等.基于扩展有限元分析的页岩水力压裂裂缝扩展规律探究[J].钻探工程,2022,49(5):177-188.WEN Jiwei, XIANG Tian, ZHU Mao, et al. Investigation of shale hydraulic fracturing propagation laws based on extended finite element analysis[J]. Drilling Engineering, 2022,49(5):177-188.
    [24] 雷治红.青海共和盆地干热岩储层特征及压裂试验模型研究[D].长春:吉林大学,2020.LEI Zhihong. Study on the characteristics of hot dry rock reservoir and fracturing test model in the Gonghe Basin, Qinghai Province[D]. Changchun: Jilin University, 2020.
    [25] 周舟,金衍,曾义金,等.青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J].吉林大学学报(地球科学版),2019,49(5):1425-1430.ZHOU Zhou, JIN Yan, ZENG Yijin, et al. Experimental study on hydraulic fracturing physics simulation, crack initiation and propagation in hot dry rock geothermal reservoir in Gonghe basin, Qinghai[J]. Journal of Jilin University(Earth Science Edition), 2019,49(5):1425-1430.
    [26] 王洪,王成虎,高桂云,等.青海共和盆地地应力状态与断层稳定性分析[J].震灾防御技术,2021,16(1):123-133.WANG Hong, WANG Chenghu, GAO Guiyun, et al. The state of the in-situ stress and fault slide evaluation of Gonghe basin, Qinghai provice[J]. Technology for Earthquake Disaster Prevention, 2021,16(1):123-133.
    [27] 陈东方,杨跃辉,牛兆轩,等.共和盆地干热岩GR2井现今地应力特征及断层稳定性分析[J].中国地质.(2023-11-21)[2024-07-03].http://kns.cnki.net/kcms/detail/11.1167.P.20231120.1237.006.html.CHEN Dongfang, YANG Yuehui, NIU Zhaoxuan, et al. In-situ stress characteristics and fault stability analysis of hot dry rock GR2 well in Gonghe Basin[J]. Geology in China. (2023-11-21)[2024-07-03].http://kns.cnki.net/kcms/detail/11.1167.P.20231120.1237.006.html.
    [28] Hubbert M K, Willis D G. Mechanics of hydraulic fracturing[J]. Transactions of the AIME, 1957,210(1):153-168.
    [29] 张卫强.岩石热损伤微观机制与宏观物理力学性质演变特征研究——以典型岩石为例[D].徐州:中国矿业大学,2017.ZHANG Weiqiang. Study on the microscopic mechanism of rock thermal damage and the evolution characteristics of macroscopic physical and mechanical properties—Taking typical rock as an example[D]. Xuzhou: China University of Mining and Technology, 2017.
    [30] 周总瑛,刘世良,刘金侠.中国地热资源特点与发展对策[J].自然资源学报,2015,30(7):1210-1221.ZHOU Zongying, LIU Shiliang, LIU Jinxia. Study on the characteristics and development strategies of geothermal resources in China[J]. Journal of Natural Resources, 2015,30(7):1210-1221.
    [31] 蔺文静,刘志明,王婉丽,等.中国地热资源及其潜力评估[J].中国地质,2013,40(1):312-321.LIN Wenjing, LIU Zhiming, WANG Wanli, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013,40(1):312-321.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹志成,陈秋,崔俊艳,等.基于扩展有限元的现场尺度水力裂缝扩展机制模拟研究[J].钻探工程,2024,51(5):85-92.
CAO Zhicheng, CHEN Qiu, CUI Junyan, et al. Simulation research of field-scale hydraulic fracture extension mechanism based on XFEM[J]. Drilling Engineering, 2024,51(5):85-92.

复制
分享
文章指标
  • 点击次数:55
  • 下载次数: 2212
  • HTML阅读次数: 32
  • 引用次数: 0
历史
  • 收稿日期:2024-07-03
  • 最后修改日期:2024-07-11
  • 录用日期:2024-07-15
  • 在线发布日期: 2024-10-08
文章二维码