4/15/2025, 8:56:19 PM 星期二
直推钻进钻遇有机污染地层微观特征试验研究
CSTR:
作者:
作者单位:

1.有色金属成矿预测与地质环境监测教育部重点实验室(中南大学),湖南 长沙 410083;2.有色资源与地质灾害探查湖南省重点实验室,湖南 长沙 410083;3.中南大学地球科学与信息物理学院,湖南 长沙 410083;4.中国地质调查局长沙自然资源综合调查中心,湖南 宁乡 410600

中图分类号:

P634;X83

基金项目:

国家重点研发计划课题“污染场地土层精准控制液压推进系统研发”(编号:2020YFC1807203)


Experimental study on microcosmic characteristics of organic polluted formations encountered by direct push drilling
Author:
  • DENG Yingying 1,2,3

    DENG Yingying

    Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring;(Central South University), Ministry of Education, Changsha Hunan 410083, China;Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha Hunan 410083, China;School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUN Pinghe 1,2,3

    SUN Pinghe

    Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring;(Central South University), Ministry of Education, Changsha Hunan 410083, China;Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha Hunan 410083, China;School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CAO Han 1,2,3

    CAO Han

    Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring;(Central South University), Ministry of Education, Changsha Hunan 410083, China;Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha Hunan 410083, China;School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Hanhan 4

    YANG Hanhan

    Changsha General Survey of Natural Resources Center, Ningxiang Hunan 410600
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LÜ Yan 1,2,3

    LÜ Yan

    Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring;(Central South University), Ministry of Education, Changsha Hunan 410083, China;Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha Hunan 410083, China;School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Hangsheng 1,2,3

    ZHANG Hangsheng

    Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring;(Central South University), Ministry of Education, Changsha Hunan 410083, China;Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha Hunan 410083, China;School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Chen 1,2,3

    ZHANG Chen

    Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring;(Central South University), Ministry of Education, Changsha Hunan 410083, China;Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha Hunan 410083, China;School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • PU Yingjie 1,2,3

    PU Yingjie

    Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring;(Central South University), Ministry of Education, Changsha Hunan 410083, China;Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha Hunan 410083, China;School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring;(Central South University), Ministry of Education, Changsha Hunan 410083, China;2.Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha Hunan 410083, China;3.School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China;4.Changsha General Survey of Natural Resources Center, Ningxiang Hunan 410600

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • | | | |
  • 文章评论
    摘要:

    直推钻进技术具有无冲洗介质、速度快、扰动小等优点,但是易受到有机污染场地土体工程性质差异等因素干扰,造成钻孔倾斜等现象。有机污染物会改变土体微观结构,导致土体工程性质发生变化,进而降低直推钻进取样点位精度。选取典型的有机污染物甲苯和四氯乙烯,制备不同污染浓度(甲苯浓度:75、120和672 mg/kg;四氯乙烯浓度:11、53和183 mg/kg)的土样来模拟钻遇的有机污染地层。通过XRD、扫描电镜、接触角和低温氮气吸附脱附试验探究土样在不同有机污染物浓度影响下微观结构的变化规律。SEM图像分析与氮气吸附脱附试验结果表明:甲苯、四氯乙烯对土样的包裹作用和化学破坏作用会让土颗粒团聚、比表面积减小、小孔隙数量明显增多、土体孔体积减小;其中粘粒含量最高为30.28%的2号土样在受672 mg/kg甲苯和183 mg/kg四氯乙烯污染后比表面积分别减小了30.70%和33.40%,Pearson相关系数r=0.382说明粘粒含量与比表面积减小率存在一定的正相关性。由于非极性分子甲苯、四氯乙烯对土颗粒的包裹作用,隔绝了土样的亲水性基团,导致土样亲水性变差、接触角增大。本研究表明有机污染物会导致土体微观特征的改变,最终会导致有机污染地层非均质性增强,进而会对直推钻进轨迹产生影响。

    Abstract:

    Direct push drilling technology has the advantages of no flushing medium, fast speed, small disturbance, etc., but it is susceptible to the interference of factors such as large differences in the engineering properties of the soil at the site of organic contamination, resulting in tilting of the borehole and other phenomena. Organic pollutants will change the microstructure of the soil, resulting in changes in soil engineering properties, which in turn reduces the accuracy of direct drilling sampling points. Typical organic pollutants toluene and perchloroethylene were selected, and soil samples with different pollutant concentrations (toluene: 75, 120 and 672 mg/kg; perchloroethylene: 11, 53 and 183 mg/kg) were prepared to simulate the drilling encountered with the organically contaminated stratum. XRD, SEM, contact angle and nitrogen adsorption and desorption tests were carried out to investigate the changing rules of microstructure of the soil samples under the influence of different organic pollutant concentrations.The results of the SEM image analysis and nitrogen adsorption and desorption tests showed that: toluene and perchloroethylene encapsulated and chemically damaged soil samples, resulting in the agglomeration of soil particles, the reduction of the specific surface area, the obvious increase in the number of small pores, and the decrease in the pore volume of soil; the content of clay particles was 30.28% at the highest level. The highest clay content of 30.28% in soil sample 2# after 672mg/kg toluene and 183mg/kg tetrachloroethylene contamination, the specific surface area decreased by 30.70% and 33.40%, respectively, and the Pearson''s correlation coefficient of r=0.382 indicates that there is a certain positive correlation between the content of clay particles and the rate of reduction of the specific surface area. Meanwhile, due to the wrapping effect of non-polar molecules toluene and perchloroethylene on the soil particles, the hydrophilic groups of the soil samples were isolated, resulting in the deterioration of the hydrophilicity of the soil samples and the increase of the contact angle. This study suggests that organic pollutants can lead to changes in the microscopic characteristics of the soil, which ultimately leads to an increase in the non-homogeneity of the organically contaminated strata, which in turn can have an impact on the direct push drilling trajectory.

    参考文献
    [1] 姜林,梁竞,钟茂生,等.复杂污染场地的风险管理挑战及应对[J].环境科学研究,2021,34(2):458-467.JIANG Lin, LIANG Jing, ZHONG Maosheng, et al. Challenges and response to risk management of complex contaminated sites[J]. Research of Environmental Sciences, 2021,34(2):458-467.
    [2] 陈雅婷,赵昕宇,李艳红,等.我国污染场地中新污染物的环境行为和修复进展[J].环境工程,2024,42(1): 166-176.CHEN Yating, ZHAO Xinyu, LI Yanhong, et al. Environmental behavior and restoration progress of emerging contaminants in contaminated sites in China[J]. Environmental Engineering, 2024,42(1):166-176.
    [3] 朱辉,叶淑君,吴吉春,等.中国典型有机污染场地土层岩性和污染物特征分析[J].地学前缘,2021,28(5):26-34.ZHU Hui, YE Shujun, WU Jichun, et al. Characteristics of soil lithology and pollutants in typical contaminattion sites in China[J]. Earth Science Frontiers, 2021,28(5):26-34.
    [4] 赵玲,滕应,骆永明.中国农田土壤农药污染现状和防控对策[J].土壤,2017,49(3):417-427.ZHAO Ling, TENG Ying, LUO Yongming. Current situation and prevention and control measures of agricultural soil pesticide pollution in China[J]. Soils, 2017,49(3):417-427.
    [5] 葛锋,张转霞,扶恒,等.我国有机污染场地现状分析及展望[J].土壤,2021,53(6):1132-1141.GE Feng, ZHANG Zhuanxia, FU Heng, et al. Distribution of organic contaminated sites in China: Statu quo and prospect[J]. Soils, 2021,53(6):1132-1141.
    [6] 姜林,赵莹,钟茂生,等.污染场地土壤气中VOCs定量被动采样技术研究及应用[J].环境科学研究,2017,30(11):1746-1753.JIANG Lin, ZHAO Ying, ZHONG Maosheng, et al. Passive sampling technology research and application for volatile organic compounds form soil gas in contaminated sites[J]. Research of Environmental Sciences, 2017,30(11):1746-1753.
    [7] 刘志阳,臧常娟,郭都,等.深层搅拌技术在有机物污染场地原位化学氧化修复中的应用[J].钻探工程, 2023,50(3):139-144.LIU Zhiyang, ZANG Changjuan, GUO Du, et al, Application of the deep mixing method in in-situ chemical oxidation remediation of organic contaminated site[J]. Drilling Engineering, 2023,50(3):139-144.
    [8] 孙平贺.直推钻探技术在污染场地调查中的应用现状研究[J].钻探工程,2021,48(1):95-102.SUN Pinghe. Study on application status of direct push drilling technology in contaminated site investigation[J]. Drilling Engineering, 2021,48(1):95-102.
    [9] 王青薇,尹业新,王水,等.中空螺旋半合管直推取样建井工艺在污染场地调查中的应用研究[J].钻探工程,2022,49(3):154-159.WANG Qingwei, YIN Yexin, WANG Shui, et al. Application of direct push sampling and well drilling technology with the hollow auger split-tube in contaminated site investigation[J]. Drilling Engineering, 2022,49(3):154-159.
    [10] 孙平贺,周生伟,曹函,等.环境地质调查中智能直推随钻测量装置的应用研究[J].煤田地质与勘探,2023,51(9):156-163.SUN Pinghe,ZHOU Shengwei,CAO Han,et al. Application of intelligent direct push measurement while drilling device for environmental geological surveys[J]. Coal Geology & Exploration, 2023,51(9):156-163.
    [11] 李文浩,卢双舫,王民,等.基于扫描电镜大视域拼接技术定量表征致密储层微观非均质性[J].石油与天然气地质,2022,43(6):1497-1504.LI Wenhao, LU Shuangfang, WANG Min, et al. Quantitative characterization of micro heterogeneity of tight reservoirs by large-view FE-SEM splicing technology[J]. Oil & Gas Geology, 2022,43(6):1497-1504.
    [12] 詹卓琛,雷中英,李潇,等.鄂尔多斯盆地D区块上古生界煤岩CT三维空间结构及非均质性表征[J].大庆石油地质与开发,2022,41(2):16-25.ZHAN Zhuochen, LEI Zhongying, LI Xiao, et al. 3D spatial structure and heterogeneous characterization using CT scan for coal rocks of upper paleozoic in Block D, Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022,41(2):16-25.
    [13] 胡有方,袁俊平,卢毅.孔隙空间分布对粗粒土强度变形特性影响研究[J].河北工程大学学报(自然科学版),2021,38(1):26-31.HU Youfang, YUAN Junping, LU Yi. Influence of pore space distribution on strength and deformation characteristics of coarse-grained soil[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2021,38(1):26-31.
    [14] 贾超,何玥,狄胜同,等.固结条件下黏性土微观孔隙结构试验研究[J].实验力学,2019,34(3):397-405.JIA Chao, HE Yue, DI Shengtong, et al. Experimental study on microscopic pore structure of clay under consolidation conditions[J]. Journal of Experimental Mechanics, 2019,34(3):397-405.
    [15] 罗松英,陈东平,陈碧珊,等.红树林湿地土壤矿物的分析[J].分析测试学报,2019,38(7):823-829.LUO Songying, CHEN Dongping, CHEN Bishan, et al. Application of mineral analysis in mangrove wetland soils[J]. Journal of Instrumental Analysis, 2019,38(7):823-829.
    [16] 贺瑶瑶,陈金洪.重金属镉污染对土体力学特性的影响及机理分析[J].科学技术与工程,2019,19(9):276-280.HE Yaoyao, CHEN Jinhong. Effect cadmium contamination on the mechanical properties and mechanism analysis of the soil[J]. Science Technology and Engineering, 2019,19(9):276-280.
    [17] 李江山,张亭亭,王平,等.土壤有机质对铅污染土固稳特性的影响规律及微观机理[J].东南大学学报(自然科学版),2016,46(S1):57-62.LI Jiangshan, ZHANG Tingting, WANG Ping, et al. Effects of organic matter on engineering characteristics and microstructures of lead contaminated soil S/S treated by cement[J]. Journal of Southeast University (Natural Science Edition), 2016,46(S1):57-62.
    [18] 边汉亮,蔡国军,刘松玉,等.农药氯氰菊酯对土体基本性质影响的室内试验研究[J].东南大学学报(自然科学版),2015,45(1):115-120.BIAN Hanliang, CAI Guojun, LIU Songyu, et al. Effects of pesticide cypermethrin on basic properties of soils based on laboratory test[J]. Journal of Southeast University (Natural Science Edition), 2015,45(1):115-120.
    [19] DONG F, LIU N, SUN Z, et al. Quantitative characterization of heterogeneity in different reservoir spaces of low-permeability sandstone reservoirs and its influence on physical properties[J]. Advances in Civil Engineering, 2021:1-8.
    [20] LV T, LI Z. Quantitative characterization method for microscopic heterogeneity in tight sandstone[J]. Energy Exploration & Exploitation, 2021,39(4):1076-1096.
    [21] 王子寒,王鹏举,景晓昆,等.粗粒土颗粒接触力学特性及细观接触模型研究[J].岩石力学与工程学报,2018,37(8):1980-1992.WANG Zihan, WANG Pengju, JING Xiaokun, et al. A study on inter-particle contact behaviors and micro contact models of coarse-grained soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(8):1980-1992.
    [22] 张伟朋,孙永福,谌文武,等.一种基于SEM图像研究土体颗粒及孔隙分布特征的分析方法[J].海洋科学进展,2018,36(4):605-613.ZHANG Weipeng, SUN Yongfu, CHEN Wenwu, et al. An analytical method for studying soil particle and pore distribution characteristics based on SEM images[J]. Advances in Marine Science, 2018,36(4):605-613.
    [23] 张先伟,孔令伟.利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J].岩土力学,2013,34(S2):134-142.ZHANG Xianwei, KONG Lingwei. Study of pore characteristics of offshore clay by SEM and MIP and NA methods[J]. Rock and Soil Mechanics, 2013,34(S2):134-142.
    [24] 童超,杨和平, ARAVIND PEDARLAA,等.由膨胀土内比表面及孔径分布来评价其膨胀行为[J].中外公路,2017,37(1):209-215.TONG Chao, YANG Heping, ARAVIND PEDARLAA, et al. The expansion behavior of expansive soil is evaluated by the internal specific surface and pore size distribution[J]. Journal of China & Foreign Highway, 2017,37(1):209-215.
    [25] 陈琼,项伟,崔德山,等.黄土坡滑坡滑带土氮气与水蒸气吸附试验研究[J].岩土工程学报,2013,35(4):691-696.CHEN Qiong, XIANG Wei, CUI Deshan, et al. Adsorption of nitrogen and water vapor by sliding zone soils of Huangtupo landslide[J]. Chinese Journal of Geotechnical Engineering, 2013,35(4):691-696.
    [26] YE W, CHEN Y, GAO C, et al. Experimental study on the microstructure and expansion characteristics of paleosol based on spectral scanning[J]. Journal of Spectroscopy, 2021:1-11.
    [27] HAYATI-ASHTIANI M. Characterization of Nano-PorousBentonite (Montmorillonite) Particles using FTIR and BET-BJH Analyses[J]. Particle & Particle Systems Characterization, 2012:3-4.
    [28] ZHANG C, LIU Z, DENG P. Contact angle of soil minerals: A molecular dynamics study[J]. Computers and Geotechnics, 2016,75:48-56.
    [29] 游阳,肖衡林,谭燕.疏水材料改性黏土渗透性能试验研究[J].三峡大学学报(自然科学版),2022,44(1):14-19.YOU Yang, XIAO Henglin, TAN Yan. Experimental research on permeability of hydrophobic material modified clay[J]. Journal of China Three Gorges University (Natural Sciences), 2022,44(1):14-19.
    [30] SOFINSKAYA O A, KOSTERIN A V, KOSTERINA E A. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals[J]. Eurasian Soil Science, 2016,49(12):1375-1381.
    [31] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938,60(2):309-319.
    [32] 侯世辉,王小明,李丹阳,等.不同粒度构造煤的孔分形特征研究[J].中国煤炭地质,2023,35(10):1-7.HOU Shihui, WANG Xiaoming, LI Danyang, et al. Research on pore fractal characteristics of tectonic coal with different particle sizes[J]. Coal Geology of China, 2023,35(10):1-7.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓盈盈,孙平贺,曹函,等.直推钻进钻遇有机污染地层微观特征试验研究[J].钻探工程,2024,51(3):27-36.
DENG Yingying, SUN Pinghe, CAO Han, et al. Experimental study on microcosmic characteristics of organic polluted formations encountered by direct push drilling[J]. Drilling Engineering, 2024,51(3):27-36.

复制
分享
文章指标
  • 点击次数:98
  • 下载次数: 2371
  • HTML阅读次数: 60
  • 引用次数: 0
历史
  • 收稿日期:2024-03-22
  • 最后修改日期:2024-05-01
  • 录用日期:2024-05-06
  • 在线发布日期: 2024-05-30
  • 出版日期: 2024-05-10
文章二维码