4/4/2025, 1:53:14 AM 星期五
基于仿真数据驱动的激光钻进气体喷嘴结构优化
CSTR:
作者:
作者单位:

中国地质大学(武汉)机械与电子信息学院,湖北 武汉 430074

中图分类号:

P634.4;TP391.9

基金项目:

国家自然科学基金项目“高功率光纤激光钻进长距离定向穿越导向孔成孔机理研究”(编号:41972325)、“煤层气水平孔激光智能定向钻进工艺及煤岩破碎理化作用机理研究”(编号:41672155)


Optimization of gas nozzle structure in laser drilling based on simulation data
Author:
Affiliation:

School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan),Wuhan Hubei 430074, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    激光钻进采用气体作为循环介质进行清孔,合理的气体流动特性是高效清孔的保障,气体喷嘴是影响气体流动特性的直接因素,其结构设计不合理会严重影响激光钻进的效率。针对激光钻进实验平台中的气体喷嘴,构建喷嘴基本型态,对影响气体清孔效率的喷嘴结构尺寸进行分析,制定仿真方案,通过Fluent模拟气体流场,对清孔效果进行分析,采用神经网络分析喷嘴结构及仿真结果,训练神经网络模型,得出最佳清孔效率时的喷嘴结构参数并进行验证,为喷嘴结构设计提供参考。

    Abstract:

    Laser drilling uses gas as circulating medium to clean holes, and the reasonable gas flow properties are the guarantee for hole cleaning efficiency. Gas nozzle is the direct factor affecting gas flow properties, and its unreasonable structural design seriously affects the efficiency of laser drilling. Aiming at the gas nozzle in the laser drilling experimental platform, the basic type of the nozzle is constructed, the nozzle structure size that affects the gas hole cleaning efficiency is analyzed, and the simulation scheme is formulated. Moreover, the gas flow field is simulated by Fluent, and the hole cleaning effect is analyzed. The nozzle structure and simulation results are analyzed by neural network, and the neural network model is trained to get and verify the best nozzle structure parameters for hole cleaning efficiency, which provides reference for the nozzle structure design.

    参考文献
    [1] 杨明军,王玉丹,文国军,等.激光辐照煤岩的热效应数值模拟分析[J].煤田地质与勘探,2018,46(6):217-222.YANG Mingjun, WANG Yudan, WEN Guojun, et al. Numerical simulation of thermal effect of laser irradiation on coal and rock[J]. Coal Geology and Exploration, 2018,46(6):217-222.
    [2] 王玉丹,罗耀坤,文国军,等.激光钻进煤岩技术的研究进展[J].煤田地质与勘探,2021,49(1):297-302.WANG Yudan, LUO Yaokun, WEN Guojun, et al. Research progress of laser drilling technology in coal petrography[J]. Coal Geology & Exploration, 2021,49(1):297-302.
    [3] 杨玲芝,文国军,王玉丹,等.激光钻井技术在煤层气定向钻进中的应用探讨[J].煤炭科学技术,2016,44(11):127-131.YANG Lingzhi, WEN Guojun, WANG Yudan, et al. Application discussion on laser borehole drilling technology to directional drilling for coalbed methane[J]. Coal Science and Technology, 2016,44(11):127-131.
    [4] 官东林,文国军,王玉丹,等.基于线激光扫描的岩石激光钻孔的三维重建和可视化[J].地质科技通报,2021,40(3):173-183.GUAN Donglin, WEN Guojun, WANG Yudan, et al. 3D reconstruction and visualization for laser drilling hole on rock based on line laser scanning[J]. Bulletin of Geological Science and Technology, 2021,40(3):173-183.
    [5] D’Alicandro A C, Mauro A. Experimental and numerical analysis of CO2 transport inside a university classroom: Effects of turbulent models[J]. Journal of Building Performance Simulation, 2023,16(4):434-459.
    [6] LI Jiaxu, XU Fengyang, CHENG Li, et al. Numerical simulation of internal flow characteristics and pressure fluctuation in deceleration process of bulb tubular pump[J]. Water, 2022,14(11):1788.
    [7] BIAN Zhiwei, CHEN Desheng, SUN Linquan, et al. Numerical simulation and experimental investigation of multiphase flow in an oxygen-rich side-blown bath smelting furnace[J]. JOM, 2023,75(9):3962-3974.
    [8] 周洋,梁冰,孙维吉,等.深部煤层钻屑粒度随钻进深度分布规律[J].中国安全生产科学技术,2020,16(1):66-72.ZHOU Yang, LIANG Bing, SUN Weiji, et al. Distribution laws of particle size of drilling cuttings with drilling depth in deep coal seams[J]. Journal of Safety Science and Technology, 2020,16(1):66-72.
    [9] LI Shi, LI Yueyang. Neural network based nonlinear model predictive control for an intensified continuous reactor[J]. Chemical Engineering and Processing: Process Intensification, 2015,96:14-27.
    [10] 蒲先渤,李泽群,尹飞,等.基于PCA-LM-BP神经网络的岩石可钻性预测研究[J].钻探工程,2023,50(6):64-69.PU Xianbo, LI Zequn, YIN Fei, et al. Research on rock drill ability prediction based on PCA-LM-BP neural network[J]. Drilling Engineering, 2023,50(6):64-69.
    [11] 陈晓君,陈小根,宋刚,等.基于人工神经网络模型的岩石特性预测[J].探矿工程(岩土钻掘工程),2019,46(1):34-38.CHEN Xiaojun, CHEN Xiaogen, SONG Gang, et al. Prediction of rock characteristics based on artificial neural network model[J]. Exploration Engineering (Rock & Soil Drilling and Tunelling), 2019,46(1):34-38.
    [12] Zhao M, Xu X, Yang H, et al. Design of a predictive RBF compensation fuzzy PID controller for 3D laser scanning system[J]. Applied Sciences, 2020,10(13):4662.
    [13] Rahman N, Khalil N. Spectrofluorimetric and circular dichroism approaches for sulfasalazine determination using serum proteins: JMP optimization and quantitative studies[J]. Microchemical Journal, 2023,193:109112.
    [14] Li J, Mocko M. Machine learning for a citizen data scientist: An experience with JMP[J]. Journal of Marketing Analytics, 2020,8(4):267-279.
    [15] 刘慧甜,胡大伟.基于机器学习的交通碳排放预测模型构建与分析[J/OL].环境科学,1-17[2024-05-17].https://doi.org/10.13227/j.hjkx.202305234.LIU Huitian, HU Dawei. Construction and analysis of machine learning base transportation carbon emission prediction model[J]. Environmental Science: 1-17[2024-05-17]. https://doi.org/10.13227/j.hjkx.202305234.
    [16] 代鑫,黄弘,汲欣愉,等.基于机器学习的城市暴雨内涝时空快速预测模型[J].清华大学学报(自然科学版),2023,63(6):865-873.DAI Xin, HUANG Hong, JI Xinyu, et al. Spatiotemporal rapid prediction model of urban rainstorm waterlogging based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023,63(6):865-873.
    [17] 张欣,田英英,韩泽龙,等.基于机器学习算法的井漏预测与诊断理论模型研究[J].钻探工程,2022,49(2):58-66.ZHANG Xin, TIAN Yingying, HAN Zelong, et al. Research on lost circulation prediction and diagnosis theoretical model based on machine learning algorithm[J]. Drilling Engineering, 2022,49(2):58-66..
    [18] Chicco D, Warrens M J, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. PeerJ Computer Science, 2021(7):1-24.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

文国军,黄子恒,王玉丹,等.基于仿真数据驱动的激光钻进气体喷嘴结构优化[J].钻探工程,2024,51(3):69-75.
WEN Guojun, HUANG Ziheng, WANG Yudan, et al. Optimization of gas nozzle structure in laser drilling based on simulation data[J]. Drilling Engineering, 2024,51(3):69-75.

复制
分享
文章指标
  • 点击次数:170
  • 下载次数: 2288
  • HTML阅读次数: 27
  • 引用次数: 0
历史
  • 收稿日期:2023-12-01
  • 最后修改日期:2024-02-05
  • 录用日期:2024-02-06
  • 在线发布日期: 2024-05-30
  • 出版日期: 2024-05-10
文章二维码