基于仿真数据驱动的激光钻进气体喷嘴结构优化
CSTR:
作者:
作者单位:

中国地质大学(武汉)机械与电子信息学院,湖北 武汉 430074

作者简介:

通讯作者:

中图分类号:

P634.4;TP391.9

基金项目:

国家自然科学基金项目“高功率光纤激光钻进长距离定向穿越导向孔成孔机理研究”(编号:41972325)、“煤层气水平孔激光智能定向钻进工艺及煤岩破碎理化作用机理研究”(编号:41672155)


Optimization of gas nozzle structure in laser drilling based on simulation data
Author:
Affiliation:

School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan),Wuhan Hubei 430074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    激光钻进采用气体作为循环介质进行清孔,合理的气体流动特性是高效清孔的保障,气体喷嘴是影响气体流动特性的直接因素,其结构设计不合理会严重影响激光钻进的效率。针对激光钻进实验平台中的气体喷嘴,构建喷嘴基本型态,对影响气体清孔效率的喷嘴结构尺寸进行分析,制定仿真方案,通过Fluent模拟气体流场,对清孔效果进行分析,采用神经网络分析喷嘴结构及仿真结果,训练神经网络模型,得出最佳清孔效率时的喷嘴结构参数并进行验证,为喷嘴结构设计提供参考。

    Abstract:

    Laser drilling uses gas as circulating medium to clean holes, and the reasonable gas flow properties are the guarantee for hole cleaning efficiency. Gas nozzle is the direct factor affecting gas flow properties, and its unreasonable structural design seriously affects the efficiency of laser drilling. Aiming at the gas nozzle in the laser drilling experimental platform, the basic type of the nozzle is constructed, the nozzle structure size that affects the gas hole cleaning efficiency is analyzed, and the simulation scheme is formulated. Moreover, the gas flow field is simulated by Fluent, and the hole cleaning effect is analyzed. The nozzle structure and simulation results are analyzed by neural network, and the neural network model is trained to get and verify the best nozzle structure parameters for hole cleaning efficiency, which provides reference for the nozzle structure design.

    参考文献
    相似文献
    引证文献
引用本文

文国军,黄子恒,王玉丹,等.基于仿真数据驱动的激光钻进气体喷嘴结构优化[J].钻探工程,2024,51(3):69-75.
WEN Guojun, HUANG Ziheng, WANG Yudan, et al. Optimization of gas nozzle structure in laser drilling based on simulation data[J]. Drilling Engineering, 2024,51(3):69-75.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-01
  • 最后修改日期:2024-02-05
  • 录用日期:2024-02-06
  • 在线发布日期: 2024-05-30
  • 出版日期: 2024-05-10
文章二维码