4/12/2025, 11:01:23 AM 星期六
冷冲击作用下干热岩井井筒裂纹扩展数值模拟研究
CSTR:
作者:
作者单位:

1.中国地质大学(武汉),湖北 武汉 430074;2.河南省地质研究院,河南 郑州 450001;3.上海浅层地热能工程技术研究中心,上海 200436

中图分类号:

P634;TE37

基金项目:

河南省重点研发专项项目(编号:231111320800);上海浅层地热能工程技术研究中心开放基金(编号:DRZX-202303)


Numerical simulation of wellbore fracture extension in hot dry rock wells under cold shock effect
Author:
Affiliation:

1.China University of Geosciences, Wuhan Hubei 430074, China;2.Henan Geological Research Institute, Zhengzhou Henan 450001, China;3.Shanghai Engineering Research Center for Shallow Geothermal Energy, Shanghai 200436, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    干热岩(HDR)是一种清洁可再生能源,主要通过增强型地热系统(EGS)进行开发。在EGS工程中,无论是注入井还是生产井的建设都需要采用地热钻井技术,而高温高压钻井过程中地层破裂、井壁坍塌等现象是干热岩钻井施工面临的重要问题。在温差作用下,岩石的矿物颗粒由于其热膨胀、冷收缩特性的差异性,矿物颗粒之间产生温度应力,导致岩体发生热破裂。本文借助RFPA数值模拟软件,对干热岩开采过程中井筒花岗岩冷冲击作用下的裂纹扩展进行研究。结果表明:井筒模型在冷冲击过程中,岩石表面拉应力随着冷冲击时间的增加,先升高至峰值后缓慢下降。裂纹扩展可以大致分为前、中、后期。冷冲击前期,井筒周围出现环形拉应力区,开始出现均匀的微小裂纹。冷冲击中期,随着时间的增加,拉应力区逐渐向井筒外围扩展,裂纹随着拉应力区向外扩展。冷冲击后期,拉应力大小逐渐降低直至小于模型抗拉强度,裂纹扩展速度减缓直至停止扩展。围压、井径、温度对井筒围岩冷冲击时的破坏损伤效果影响显著,其中,温度对冷冲击裂纹扩展起到促进作用,围压对冷冲击裂纹扩展起到抑制作用,井径对冷冲击裂纹扩展起到促进作用。

    Abstract:

    Hot dry rock (HDR) is a clean and renewable energy resource developed mainly through enhanced geothermal systems (EGS). In EGS engineering, geothermal drilling technology is required for the construction of both injection wells and production wells, and the formation fracture and wellbore collapse during high temperature and high pressure drilling are important problems in hot dry rock drilling construction. Under the action of temperature difference, the temperature stress is generated between mineral particles due to the difference of thermal expansion and cold shrinkage characteristics of mineral particles of rock, which results in thermal fracture of rock mass. In this paper, with the help of RFPA numerical simulation software, the fracture propagation of granite in wellbore under the action of cold shock during hot dry rock mining is studied. The results show that during the cold shock process of the wellbore model, as the increase of the cold shock time, the tensile stress on the rock surface first increases to a peak value and then decreases slowly. The fracture growth can be roughly divided into early, middle and late stages. In the early stage, an annular tensile stress zone appears around the wellbore and uniform micro-cracks begin to appear. In the middle stage, with the increase of time, the tensile stress zone gradually spreads to the periphery of the wellbore and the fracture spreads outward beyond the tensile stress zone. In the late stage, the tensile stress gradually decreases to less than the tensile strength of the model, and the fracture propagation slows down until it stops. The confining pressure, well diameter and temperature have a significant impact on the damage effect of the surrounding rock under cold shock. Among them, the temperature and well diameter promotes the growth of cold shock fracture while the confining pressure inhibits it.

    参考文献
    [1] 王文,吴纪修,施山山,等.探秘“能源新星”——干热岩[J].探矿工程(岩土钻掘工程),2020,47(3):88-93.WANG Wen, WU Jixiu, SHI Shanshan, et al. Probe a new energy-hot dry rock[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(3):88-93.
    [2] 谭现锋,张强,战启帅,等.干热岩储层高温条件下岩石力学特性研究[J].钻探工程,2023,50(4):110-117.TAN Xianfeng, ZHANG Qiang, ZHAN Qishuai, et al. Study on rock mechanical properties of hot-dry rock reservoir under high temperature[J]. Drilling Engineering, 2023,50(4):110-117.
    [3] Huang W, Cao W, Jiang F. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy, 2018,162:630-644.
    [4] 谭现锋,刘肖,马哲民,等.干热岩储层裂隙准确识别关键技术探讨[J].钻探工程,2023,50(2):48-57.TAN Xianfeng, LIU Xiao, MA Zhemin, et al. Discussion on the key technology for fracture identification in hot dry rock reservoir[J]. Drilling Engineering, 2023,50(2):48-57..
    [5] Hu X, Banks J, Guo Y, et al. Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation[J]. Energy, 2022,238:121676.
    [6] 唐世斌,罗江,唐春安.低温诱发岩石破裂的理论与数值模拟研究[J].岩石力学与工程学报,2018,37(7):1596-1607.TANG Shibin, LUO Jiang, TANG Chun’an. Theoretical and numerical study on the cryogenic fracturing in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(7):1596-1607.
    [7] 解经宇,王丹,李宁,等.干热岩压裂建造人工热储发展现状及建议[J].地质科技通报,2022,41(3):321-329.XIE Jingyu, WANG Dan, LI Ning, et al. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology, 2022,41(3):321-329.
    [8] 何淼,龚武镇,许明标,等.干热岩开发技术研究现状与展望分析[J].可再生能源,2021,39(11):1447-1454.HE Miao, GONG Wuzhen, XU Mingbiao, et al. Research status and prospect analysis of hot dry rock development technology[J]. Renewable Energy Resources, 2021,39(11):1447-1454.
    [9] 谢紫霄,黄中伟,熊建华,等.天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J].天然气工业,2022,42(4):63-72.XIE Zixiao, HUANG Zhongwei, XIONG Jianhua, et al. Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J]. Natural Gas Industry, 2022,42(4):63-72.
    [10] 刘畅,冉恒谦,许洁.干热岩耐高温钻井液的研究进展与发展趋势[J].钻探工程,2021,48(2):8-15.LIU Chang, RAN Hengqian, XU Jie. Research progress and development trend of high-temperature drilling fluid in hor dry rock[J]. Drilling Engineering, 2021,48(2):8-15.
    [11] 严成增.FDEM-TM方法模拟岩石热破裂[J].岩土工程学报,2018,40(7):1198-1204.YAN Chengzeng. Simulating thermal cracking of rock using FDEM-TM method[J]. Chinese Journal of Geotechnical Engineering, 2018,40(7):1198-1204.
    [12] 黄鑫,唐世斌,包春燕,等.热应力与膨胀力耦合作用下岩石破裂机理的数值模拟研究[J].防灾减灾工程学报,2017,37(4):611-620.HUANG Xin, TANG Shibin, BAO Chunyan, et al. Numerical simulation of rock failure process under coupling effect of thermal stress and inner pressure[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4):611-620.
    [13] 包春燕.层状岩石类材料间隔破裂机理及其数值试验研究[D].大连:大连理工大学,2014.BAO Chunyan. Numerical analysis and mechanism of fracture spacing in bedded rock[D]. Dalian: Dalian University of Technology, 2014.
    [14] 高红梅,梁学彬,兰永伟,等.热应力作用下缺陷花岗岩的渗流规律[J].黑龙江科技大学学报,2016,26(6):691-694.GAO Hongmei, LIANG Xuebin, LAN Yongwei, et al. Seepage law behind fractured granite under thermal stress[J]. Journal of Heilongjiang University of Science and Technology, 2016,26(6):691-694.
    [15] 郑君,樊涛,窦斌,等.二氧化碳爆破储层改造近炮孔处岩石性质变化及温度分布规律研究[J].钻探工程,2022,49(3):13-22.ZHENG Jun, FAN Tao, DOU Bin, et al. Rock property change and temperature distribution near blasting holes in carbon dioxide blasting reservoir treatment[J]. Drilling Engineering, 2022,49(3):13-22.
    [16] 肖鹏,窦斌,田红,等.地热储层单裂隙岩体渗流传热数值模拟研究[J].钻探工程,2021,48(2):16-28.XIAO Peng, DOU Bin, TIAN Hong, et al. Numerical simulation of seepage and heat transfer in single fractured rock mass of geothermal reservoirs[J]. Drilling Engineering,2021,48(2):16-28.
    [17] Ali A Y, Bradshaw S M. Bonded-particle modelling of microwave-induced damage in ore particles[J]. Minerals Engineering, 2010,23(10):780-790.
    [18] Zhao Z H, Liu Z N, Pu H, et al. Effect of thermal treatment on brazilian tensile strength of granites with different grain size distributions[J]. Rock Mechanics & Rock Engineering, 2018,51(4):1293-1303.
    [19] 沈宝堂,孟文航,张士川,等.岩体裂纹扩展液-热-力耦合模块数值模拟研究[J].矿业研究与开发,2021,41(11):76-81.SHEN Baotang, MENG Wenhang, ZHANG Shichuan, et al. Numerical simulation of hydro-mechanical-thermal coupling function in crack propagation of rock mass[J]. Mining Research and Development. 2021,41(11):76-81.
    [20] 张晓敏,彭向和.热力耦合问题的本构方程[J].重庆大学学报(自然科学版),2006(6):111-114.ZHANG Xiaomin, PENG Xianghe. Constitutive equations for thermo-mechanical coupling problems[J]. Journal of Chongqing University (Natural Science Edition), 2006(6):111-114.
    [21] Pitarresi G, Patterson E A. A review of the general theory of thermoelastic stress analysis[J]. The Journal of Strain Analysis for Engineering Design, 2003,38(5):405-417.
    [22] Collins D J, Quaglia R, Powell J R, et al. The orthogonal LMBA: A novel RFPA architecture with broadband reconfigurability[J]. IEEE Microwave and Wireless Components Letters, 2020,30(9):888-891.
    [23] 鲍如意.单轴受压条件下层状页岩的裂纹扩展规律及破坏机理研究[D].绍兴:绍兴文理学院,2021.BAO Ruyi. Study on crack propagation law and failure mechanism of layered shale under uniaxial compression[D]. Shaoxing: Shaoxing College of Arts and Sciences, 2021.
    [24] 黄鑫.温度梯度诱发岩石破裂机理研究[D].大连:大连理工大学,2020.HUANG Xin. Study of rock fracture mechanism induced by thermal gradient[D]. Dalian: Dalian University of Technology, 2020.
    [25] 陈宇.共和盆地干热花岗岩冷冲击裂纹扩展机理研究[D].武汉:中国地质大学(武汉),2022.CHEN Yu. Study on the extension mechanism of cold impact cracks in hot dry granite in the Gonghe Basin [D]. Wuhan: China University of Geosciences, 2022.
    [26] 徐志纶.弹性力学简明教程[M].北京:高等教育出版社,2016.XU Zhilun. A Concise Tutorial on Elastic Mechanics[M]. Beijing: Higher Education Press, 2016.
    [27] 罗江.温度应力诱发的岩石裂纹扩展研究[D].大连:大连理工大学,2018.LUO Jiang. Study on rock crack propagation induced by temperature stress[D]. Dalian: Dalian University of Technology, 2018.
    [28] 郤保平,李晓雪,王磊,等.基于黏弹性理论的干热岩井筒变形与损伤破坏研究[J].太原理工大学学报,2019,50(6):820-828.YU Baoping, LI Xiaoxue, WANG Lei, et al. Study on borehole deformation and damage in hot dry rock based on viscoelastic theory[J]. Journal of Taiyuan University of Technology, 2019,50(6):820-828.
    [29] Miao S T, Pan P Z, Yu P Y, et al. Fracture analysis of Beishan granite after high-temperature treatment using digital image correlation[J]. Engineering Fracture Mechanics, 2020,225.
    [30] Xing Y K, Huang B X. Thermoplastic cohesive fracturing model of thermally-treated granite[J]. International Journal Of Rock Mechanics and Mining Sciences, 2021,148:104974.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

颜谢材,郑君,罗浩瀚,等.冷冲击作用下干热岩井井筒裂纹扩展数值模拟研究[J].钻探工程,2024,51(3):94-103.
YAN Xiecai, ZHENG Jun, LUO Haohan, et al. Numerical simulation of wellbore fracture extension in hot dry rock wells under cold shock effect[J]. Drilling Engineering, 2024,51(3):94-103.

复制
分享
文章指标
  • 点击次数:91
  • 下载次数: 2249
  • HTML阅读次数: 30
  • 引用次数: 0
历史
  • 收稿日期:2023-11-09
  • 最后修改日期:2024-01-09
  • 录用日期:2024-01-29
  • 在线发布日期: 2024-05-30
  • 出版日期: 2024-05-10
文章二维码