基于区域多井数据优选与模型预训练的深部地质钻探过程钻速动态预测方法
CSTR:
作者:
作者单位:

1.中国地质大学(武汉)自动化学院,湖北 武汉 430074;2.复杂系统先进控制与智能自动化湖北省重点实验室,湖北 武汉 430074;3.地球探测智能化技术教育部工程研究中心,湖北 武汉 430074;4.山东省第三地质矿产勘查院,山东 烟台 264004;5.山东省地矿局钻探工程技术研究中心,山东 烟台 264004

作者简介:

通讯作者:

中图分类号:

P634

基金项目:

国家自然科学基金青年项目“基于多源井震信息融合的地质钻进过程钻速智能优化”(编号:62003318);中央高校基本科研业务费专项资金科研项目“考虑复杂地质环境的钻进过程钻速优化”(编号:CUG2106350)


Dynamic prediction method of rate of penetration (ROP) in deep geological drilling process based on regional multi-well data optimization and model pre-training
Author:
Affiliation:

1.School of Automation, China University of Geosciences, Wuhan Hubei 430074, China;2.Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan Hubei 430074, China;3.Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan Hubei 430074, China;4.Shangdong No.3 Exploration Institute of Geology and Mineral Resources, Yantai Shandong 264004, China;5.Drilling Engineering Technology Research Center of Shandong Provincial Bureau of Geology & Mineral Resources, Yantai Shandong 264004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深部地质钻探过程钻速精准预测有助于提升钻探效率、降低钻探成本,可为安全高效的深部地质钻探施工提供关键技术支撑。本文提出了一种基于区域多井数据优选与模型预训练的深部地质钻探过程钻速动态预测方法。首先,选取岩性识别软件、钻进过程智能监控云平台、地质云系统等作为数据源,在此基础上设计深部地质钻探数据仓库。其次,运用区域多井数据优选技术在数据仓库中选择与目标井较匹配的数据,并开展钻速模型预训练。最后,结合深部地质钻探过程实钻数据,引入小波滤波、超限学习机、增量学习等技术,实现钻速预测模型动态更新。实验对比结果验证了所提方法具有很强的钻速预测性能与泛化能力。

    Abstract:

    Accurate prediction of rate of penetration (ROP) in deep geological drilling process can help to improve drilling efficiency and reduce drilling costs, which can provide key technical support for safety and efficient deep geological drilling construction. In this paper, a dynamic prediction method of ROP in deep geological drilling process based on regional multi-well data optimization and model pre-training is proposed. First, the deep geological drilling data warehouse is designed by selecting lithology identification software, drilling process intelligent monitoring cloud platform, and geological cloud system as data sources. Secondly, the regional multi-well data optimization technique is used to select the matching data with the target well in the data warehouse, and the ROP model is pre-trained on this basis. Finally, the ROP prediction model is dynamically updated through combining the actual drilling data of deep geological drilling process, and introducing techniques such as the wavelet filtering, extreme learning machine, and incremental learning strategy. The experimental comparison results verify that the proposed method has strong ROP prediction performance and generalization capability.

    参考文献
    相似文献
    引证文献
引用本文

甘超,汪祥,王鲁朝,等.基于区域多井数据优选与模型预训练的深部地质钻探过程钻速动态预测方法[J].钻探工程,2023,50(4):1-8.
GAN Chao, WANG Xiang, WANG Luzhao, et al. Dynamic prediction method of rate of penetration (ROP) in deep geological drilling process based on regional multi-well data optimization and model pre-training[J]. Drilling Engineering, 2023,50(4):1-8.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-21
  • 最后修改日期:2023-06-24
  • 录用日期:2023-06-25
  • 在线发布日期: 2023-07-20
  • 出版日期: 2023-07-10
文章二维码