1.中国地质大学(武汉)自动化学院,湖北 武汉 430074;2.复杂系统先进控制与智能自动化湖北省重点实验室,湖北 武汉 430074;3.地球探测智能化技术教育部工程研究中心,湖北 武汉 430074;4.山东省第三地质矿产勘查院,山东 烟台 264004;5.山东省地矿局钻探工程技术研究中心,山东 烟台 264004
P634
国家自然科学基金青年项目“基于多源井震信息融合的地质钻进过程钻速智能优化”(编号:62003318);中央高校基本科研业务费专项资金科研项目“考虑复杂地质环境的钻进过程钻速优化”(编号:CUG2106350)
1.School of Automation, China University of Geosciences, Wuhan Hubei 430074, China;2.Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan Hubei 430074, China;3.Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan Hubei 430074, China;4.Shangdong No.3 Exploration Institute of Geology and Mineral Resources, Yantai Shandong 264004, China;5.Drilling Engineering Technology Research Center of Shandong Provincial Bureau of Geology & Mineral Resources, Yantai Shandong 264004, China
甘超,汪祥,王鲁朝,等.基于区域多井数据优选与模型预训练的深部地质钻探过程钻速动态预测方法[J].钻探工程,2023,50(4):1-8.GAN Chao, WANG Xiang, WANG Luzhao, et al. Dynamic prediction method of rate of penetration (ROP) in deep geological drilling process based on regional multi-well data optimization and model pre-training[J]. Drilling Engineering, 2023,50(4):1-8.
复制