4/3/2025, 10:05:05 AM 星期四
钻具旋转时同心窄间隙环空流动的数值模拟
CSTR:
作者:
作者单位:

1.中海油服油田化学事业部深圳作业公司,广东 深圳 518000;2.中海油服油田化学事业部湛江作业公司,广东 湛江 524000;3.中国科学院力学研究所,北京100190

中图分类号:

TE242;P634


Numerical simulation of flow in the concentric narrow annulus during drilling tool rotation
Author:
Affiliation:

1.COSL Oilfield Chemicals Shenzhen Operation Company, Shenzhen Guangdong 518000, China;2.COSL Oilfield Chemicals Zhanjiang Operation Company, Zhanjiang Guangdong 524000, China;3.Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    钻井过程中,当循环钻井液在井眼环空中作轴向流动时,由于钻具旋转而导致周向运动的出现,整个环空中因此形成螺旋流动,从而可能会对环空(特别是窄间隙)摩擦压降存在潜在的影响。对此,本文借助数值模拟软件,对同心窄间隙环空中钻具旋转下的层流流动进行直接数值模拟计算并分析。其中,钻具理想化为钻杆或圆柱体;钻井液则选用3种不同流变参数的宾汉流体。当前数值模拟计算结果表明,在不同钻具/杆转速下,PLR(压损比)几乎保持不变;这就表明,钻具/杆旋转过程中,并不会引起环空中摩擦压降的显著变化;然而,对比一些经验公式后发现,除了Ooms(1999)的公式能与当前计算吻合外,其余公式均不能反应该现象。进一步地,通过观察环空压力沿径向的变化过程时,结果表明,在当前180 rad/min范围内,压力沿径向几乎不变;即使当转速增大到600 rad/min,这种径向变化也十分有限,占比大约是2×10-5量级。因此,在当前工程应用范围(钻具转速在180 rad/min以内)内,钻具旋转既不会导致轴向摩擦压降增大,也不会引起压力沿着径向显著变化。本文研究结果为实际钻井过程中对钻具旋转引起的摩擦压降的估算提供了一些参考,有助于优化钻井工艺和设备设计,提高钻进效率和安全性。

    Abstract:

    During drilling, when circulating drilling fluid flows axially in the wellbore ring, the circumferential motion occurs due to the rotation of drilling tools, and spiral flow is formed in the whole annulus. This may have a potential impact on the friction pressure drop in the annulus, especially the narrow gap. In this paper, the laminar flow under the rotation of concentric narrow gap ring drilling tools is calculated and analyzed by numerical simulation software. Among them, the drilling tool is ideal as drill pipe or cylinder, and the drilling fluid is composed of three kinds of Bingham fluid with different rheological parameters. The drilling fluid is the current numerical simulation results show that the PLR (pressure-loss ratio) is almost constant at different drilling tool/rod speeds; this indicates that the friction pressure drop in the annulus does not change significantly during the drilling tool/rod rotation; However, a comparison of some empirical formulas reveals that, with the exception of Ooms (1999) formula, which matches the current calculations, none of the other formulas can reflect the phenomenon. Moreover, by observing the radial variation of annulus pressure, the results show that the pressure is almost constant along the radial direction in the current 180rad/min range, and even when the rotational speed increases to 600 rad/min, the radial variation is very limited, accounting for about 2×10-5 order of magnitude. therefore, in the current engineering application range (drilling tool speed within 180rad/min), drilling tool rotation will neither cause an increase in axial friction pressure drop nor cause significant changes in pressure along the radial direction. The results of this paper provide some references for the estimation of friction pressure drop caused by rotating drilling tools in the actual drilling process, which can help to optimize the drilling process and equipment design, and improve the drilling efficiency and safety.

    参考文献
    [1] 施览玲.东海西湖井身结构深度优化技术及其应用[J].钻探工程,2021,48(10):76-81.SHI Lanling. Deep optimization technology of the casing program and its application in Xihu Sag, East China Sea[J]. Drilling Engineering, 2021,48(10):76-81.
    [2] 李忠庆,李传武,朱达江.利用环空压力测试数据评价高温高压气井固井水泥环的密封完整性[J].钻探工程,2021,48(6):15-21.LI Zhongqing, LI Chuanwu, ZHU Dajiang. Cement integrity evaluation of HTHP gas wells based on annulus pressure diagnosis test[J]. Drilling Engineering, 2021,48(6):15-21.
    [3] 伍晓龙,冯钰琦,杜垚森,等.气举反循环双壁钻具流场仿真分析[J].钻探工程,2022,49(3):83-91.WU Xiaolong, FENG Yuqi, DU Yaosen, et al. Simulation analysis of the flow field of the air lift reverse circulation dual wall drill tool[J]. Drilling Engineering, 2022,49(3):83-91.
    [4] 罗敏,赵厦,姜富洋,等.水平井旋转钻柱流固耦合动力罗学分析[C]//中国力学大会暨钱学森诞辰100周年纪念大会.中国力学学会,2011.LUO Min, ZHAO Xia, JIANG Fuyang, et al. Fluid-structure interaction dynamic analysis of rotary drillstring in horizontal well[C]//2001 in Memorial of Tsien Hsue-Shen’s 100 Anniversary. The Chinese Society of Theoretical and Applied Mechanics, 2011.
    [5] Hemphill T., Ravi K, Bern PA, et al. A simplified method for prediction of ECD increase with drillpipe rotation[J]. SPE, 2008:115378.
    [6] Hemphill T, Ravi K. Calculation of drillpipe rotation effects on fluids in axial flow: an engineering approach[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 2005.
    [7] Isambourg P, Bertin D L, Brangetto M. Field hydraulic tests improve HPHT drilling safety and performance[J]. SPE Drilling & Completion, 1999,14(4):219-227.
    [8] Ahmed R., et al. The effect of drillstring rotation on Equivalent Circulation Density: modeling and analysis of field measurements[J]. SPE, 2010:135587.
    [9] Ahmed R., Miska S.. Experimental study and modeling of yield power-law fluid flow in annuli with drillpipe rotation[J]. SPE, 2008:112604.
    [10] Enfis M., Ahmed R., Saasen A.. The hydraulic effect of tool-join on annular pressure loss[J]. SPE, 2011:142282.
    [11] Ooms O., Burgerscentrum J. M., Kampman-Reinhartz B. E. Influence of drillpipe rotation and eccentricity on pressure drop over borehole during drilling[J]. SPE 56638
    [12] 田野,蒋东雷,马传华,等.钻柱偏心旋转对环空摩阻压降影响的数值模拟研究[J].石油钻探技术,2022,50(5):42-49.TIAN Ye, JIANG Donglei, MA Chuanhua, et al. Numerical simulation of the effects of eccentric rotation of the drill string on annular frictional pressure drop[J]. Petroleum Drilling Techniques, 2022,50(5):42-49.
    [13] 蔡萌.幂律流体偏心环空螺旋流压力梯度的数值计算[J].石油钻采工艺,2010,32(2):11-14.CAI Meng. Numerical calculation of pressure gradient of helical flow of power-law fluid in eccentric annulus[J]. Oil Drilling and Production Technology, 2010,32(2):11-14.
    [14] FerroudjiH, HadjadjA, NOFEIT.偏心环空中幂率流体层流流动特性数值模拟研究[J].石油钻探技术,2020,48(4):37-42.Ferroudji H, Hadjadj A, NOFEI T. Effects of the inner pipe rotation and rheological parameters on the axial and tangential velocity profiles and pressure drop of yield power-law fluid in eccentric annulus[J]. Petroleum Drilling Techniques, 2020,48(4):37-42.
    [15] 李旭,任胜利,刘文成,等.单一环空窄间隙条件下固井液当量循环密度及其数值模拟计算[J].钻采工艺,2021,44(4):23-27.LI Xu, REN Shengli, LIU Wencheng, et al. Equivalent circulating density calculation of cementing fluid and lts numerical simulation for narrow annuli with single radial size[J]. Drilling & Production Technology, 2021,44(4):23-27.
    [16] 顾昊琛,王全荣,詹红兵.非完整井下单井注抽试验数值模拟方法改进[J].地球科学,2020,45(2):685-692.GU Haochen, WANG Quanrong, ZHAN Hongbing. An lmproved approach in modeling lnjection-withdraw test of the partially penetrating well[J]. Journal of Earth Science, 2020,45(2):685-692.
    [17] 孙宝江,高永海,刘东清.水泥浆流变性分析及其环空流动的数值模拟[J].水动力学研究与进展A辑,2007(3):317-324.SUN Baojiang, GAO Yonghai, LIU Dongqing. Experimental study on rheological property for cement Slurry and numerical simulation on its annulus flow[J]. Chinese Journal of Hydrodynamics, 2007(3):317-324.
    [18] 高远文,鲁港,杨龙,等.宾汉钻井液圆管轴向层流压降的数值计算[J].探矿工程(岩土钻掘工程),2010,37(3):5-7.GAO Yuanwen, LU Gang, YANG Long, et al. Numerical calculation for axial laminar flow pressure drop of the Bingham drilling fluid in circular pipe[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010,37(3):5-7.
    [19] 袁洪水,和鹏飞,袁则名,等.基于数值模拟的远程工程支持在海洋19-6井的实践[J]. 探矿工程(岩土钻掘工程),2018,45(3):42-45.YUAN Hongshui, HE Pengfei, YUAN Zeming, et al. Research and application of decision support method for drilling engineering based on data analysis[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(3):42-45.
    引证文献
引用本文

龚勇,蒋凯,闫许峰,等.钻具旋转时同心窄间隙环空流动的数值模拟[J].钻探工程,2023,50(6):57-63.
GONG Yong, JIANG Kai, YAN Xufeng, et al. Numerical simulation of flow in the concentric narrow annulus during drilling tool rotation[J]. Drilling Engineering, 2023,50(6):57-63.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-13
  • 最后修改日期:2023-07-24
  • 录用日期:2023-08-23
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-11-10
文章二维码