4/5/2025, 11:39:26 PM 星期六
冰层热融钻具倾斜原因及防/纠斜方法浅析
CSTR:
作者:
作者单位:

中国地质大学(北京)工程技术学院,北京100083

中图分类号:

P634.7

基金项目:

国家自然科学基金项目“南极冰下湖科学钻探选址及冰下过程研究”(编号:41941005);国家重点研发计划项目“南极冰下复杂地质环境多工艺钻探理论与方法”课题四“多工艺极地钻探装备研发与系统集成”(编号:2021YFA0719104);中央高校科研基本业务费项目“可回收式热融钻具孔内融水与周围冰层传热机理研究”(编号:2-9-2021-017)


A brief analysis of inclination causes and preventing/correcting methods for ice hot-point drills
Author:
Affiliation:

School of Engineering and Technology, China University of Geosciences, Beijing 100083, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在冰层钻进时,热融钻具往往会发生倾斜,导致其偏离目标冰层,无法完成既定钻探任务,因此必须对热融钻具的倾斜进行预防和纠正。为此,本文首先分析了热融钻具发生倾斜的原因,并将其归纳为热融钻头底部冰层受热不均、热融钻具结构稳定性差、放缆速度高于钻进速度、钻孔直径过大等;然后,从热力法、重力法、浮力法、推靠法、扶正器法、导向杆嫁接法、钻孔直径减小法等方面归纳总结了热融钻具的防/纠斜方法,从而为进一步开展热融钻具防/纠斜研究奠定了基础。

    Abstract:

    The hot-point drillis often tend to tilt in ice drilling, which results in deviation from the target ice and failure to complete the scheduled drilling mission. To this end, the causes for the inclination of hot-point drills are anaylized and categorized into uneven heating of the ice at the bottom of the thermal head, poor stability of the hot-point drill structure, higher speed of cable unwinding than penetration speed and oversized borehole diameter. The methods of preventing and correcting the inclination in hot-point drilling are summarized, including the thermal method, the gravity method, the buoyancy method, the push method, the centralizer method, the guide rod method and the borehole diameter reduction method, so as to lay a foundation for further research on preventing and correcting the inclination of hot-point drills.

    参考文献
    [1] Cuffey K M, Paterson W S B. The Physics of Glaciers (The Fourth Edition)[M]. Oxford: Butterworth-Heinemann, 2010.
    [2] 秦大河,任贾文.南极冰川学[M].北京:科学出版社,2001.QIN Dahe, REN Jiawen. Antarctica Glaciology[M]. Beijing: Science Press, 2001.
    [3] 姚檀栋.冰芯研究与全球变化[J].中国科学院院刊,1996,11(5):368-371.YAO Tandong. Ice core research and global change[J]. Bulletin of Chinese Academy of Sciences, 1996,11(5):368-371.
    [4] 王宁练,姚檀栋.冰芯对于过去全球变化研究的贡献[J].冰川冻土,2003,25(3):275-287.WANG Ninglian, YAO Tandong. Contributions of ice core to the past global change research[J]. Journal of Glaciology and Geocryology, 2003,25(3):275-287.
    [5] Talalay P G. Thermal Ice Drilling Technology[M]. Singapore: Springer Singapore Pte Ltd., 2020.
    [6] 李亚洲.冰层热融钻进机理研究及冰下湖钻探用热融钻头研制[D].长春:吉林大学,2021.LI Yazhou. Research on the mechanism of ice hot-point drilling process and development of thermal heads for subglacial lakes accessing [D]. Changchun: Jilin University, 2021.
    [7] Wade F A. The physical aspects of the Ross Ice Shelf[J]. Proceedings of the American Philosophical Society, 1945,89(1):160-173.
    [8] Nizery A. Electrothermic rig for the boring of glaciers[J]. Eos, Transactions American Geophysical Union, 1951,32(1):66-72.
    [9] Gerrard J A F, Perutz M F, Roch A. Measurement of the velocity distribution along a vertical line through a glacier[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1952,213(1115):546-558.
    [10] LaChapelle E. A simple thermal ice drill[J]. Journal of Glaciology, 1963,4(35):637-642.
    [11] Gillet F. Steam, hot-water and electrical thermal drills for temperate glaciers[J]. Journal of Glaciology, 1975,14(70):171-179.
    [12] Zimmerman W, Bonitz R, Feldman J. Cryobot: An ice penetrating robotic vehicle for Mars and Europa[C]//2001 IEEE Aerospace Conference Proceedings. Big Sky, MT, USA, 2001.
    [13] Talalay P G, Zagrodnov V S, Markov A N, et al. Recoverable autonomous sonde (RECAS) for environmental exploration of Antarctic subglacial lakes: General concept[J]. Annals of Glaciology, 2014,55(65):23-30.
    [14] Winebrenner D P, Elam W T, Miller V, et al. A thermal ice-melt probe for exploration of Earth analogs to Mars, Europa and Enceladus[C]//44th lunar and planetary science conference. Woodlands, Texas, USA, 2013.
    [15] Dachwald B, Mikucki J, Tulaczyk S, et al. IceMole: A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems[J]. Annals of Glaciology, 2014,55(65):14-22.
    [16] Wirtza M, Hildebrandt M. IceShuttle Teredo: An ice-penetrating robotic system to transport an exploration AUV into the ocean of Jupiter''s moon Europa[C]//67th International Astronautical Congress (IAC). Guadalajara, Mexico, 2016.
    [17] Dirk H, Peter L, Simon Z, et al. An efficient melting probe for glacial research[J]. Annals of Glaciology, 2020,62(84):171-174.
    [18] Kelty J R. An in situ sampling thermal probe for studying global ice sheets[D]. Omaha: University of Nebraska, 1995.
    [19] Talalay P G, Li Y, Sysoev M A, et al. Thermal tips for ice hot-point drilling: Experiments and preliminary thermal modeling[J]. Cold Regions Science and Technology, 2019,160:97-109.
    [20] Schüller K, Kowalski J, Råback P. Curvilinear melting—A preliminary experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2016,92:884-892.
    [21] Schüller K, Kowalski J. Spatially varying heat flux driven close-contact melting—A Lagrangian approach[J]. International Journal of Heat and Mass Transfer, 2017,115:1276-1287.
    [22] Li Y, Talalay P G, Fan X, et al. Modeling of hot-point drilling in ice[J]. Annals of Glaciology, 2021,62(85-86):360-373.
    [23] Hiroyuki K, Akio S, Seiji O, et al. Direct contact melting with asymmetric load[J]. International Journal of Heat and Mass Transfer, 2005,48(15):3221-3230.
    [24] Kohno M, Fujii Y, Hirata T. Chemical composition of volcanic glasses in visible tephra layers found in a 2503 m deep ice core from Dome Fuji, Antarctica[J]. Annals of Glaciology, 2004,39:576-584.
    [25] Narcisi B, Petit J R, Langone A. Last glacial tephra layers in the Talos Dome ice core (peripheral East Antarctic Plateau), with implications for chronostratigraphic correlations and regional volcanic history[J]. Quaternary Science Reviews, 2017,165:111-126.
    [26] Aamot H W C. Instrumented probes for deep glacial investigations[J]. Journal of Glaciology, 1968,7(50):321-328.
    [27] Philberth K. The thermal probe deep-drilling method by EGIG in 1968 at Station Jarl-Joset, Central Greenland[C]//Ice-core Drilling: Proceeding of the Symposium. University of Nebraska, Lincoln, USA, 1976.
    [28] Philberth K. Die thermische Tiefbohrung in Station Jarl-Joset und ihre theoretische Auswertung[J]. Polarforschung, 1984,54(1):43-49.
    [29] Kowalski J, Linder P, Zierke S, et al. Navigation technology for exploration of glacier ice with maneuverable melting probes[J]. Cold Regions Science and Technology, 2016,123:43-70.
    [30] Yazhou L, Yang Y, Xiaopeng F, et al. Power consumption of a Philberth thermal probe in ice sheet exploration[J]. Cold Regions Science and Technology, 2020,177:103-114.
    [31] Aamot H W C. The Philberth probe for investigating polar ice caps, 119[R]. Hanover: USA CREEL, 1967.
    [32] Philberth K. Über zwei Elktro-Schmelzsonden mit Vertikal-Stabilisierung[J]. Polarforschung, 1964,34(1-2):278-280.
    [33] German L, Mikucki J A, Welch S A, et al. Validation of sampling antarctic subglacial hypersaline waters with an electrothermal ice melting probe (IceMole) for environmental analytical geochemistry[J]. International Journal of Environmental Analytical Chemistry, 2019,101(15):2654-2667.
    [34] Lyons W B, Mikucki J A, German L A, et al. The geochemistry of englacial brine from Taylor glacier, Antarctica[J]. Journal of Geophysical Research: Biogeosciences, 2019,124(3):633-648.
    [35] Miller M M. The application of electro-thermic boring methods to englacial research with special reference to the Juneau Icefield investigations in 1952-53,4[R].Institute of North America, 1953.
    [36] Aamot H W C. Pendulum steering for thermal probes in glaciers, 116[R]. Hanover: USA CREEL, 1967.
    [37] Aamot H W C. Development of a vertically stabilized thermal probe for studies in and below ice sheets[J]. Journal of Engineering for Industry, 1970,92(2):263-268.
    [38] Hansen B L, Kersten L. An in-situ sampling thermal probe[C]//Proceeding of the Second International Workshop/Symposium on Ice Drilling Technology. Calgary, Alberta, Canada, 1984.
    [39] Morton B R, Lightfoot R M. A prototype meltsonde probe-design and experience, 14[R]. Australian Antarctic Division, Department of Science, 1975.
    [40] Tibcken M, Dimmler W. Einsatz einer durchschmelzsonde (susi) zum transporteiner kommerziellen CTD-Sonde unter das schelfeis[J]. Polarforsch, 1997,219:106-112.
    [41] Bentley C R, Koci B R, Augustin L, et al. Ice Drilling and Coring//Drilling in Extreme Environments: Penetration and Sampling on Earth and Other Planets[M]. Weinheim: WILEY-VCH Verlag GmbH & Co., KGaA, 2009:221-308.
    [42] Zagorodnov V, Tyler S, Holland D, et al. New technique for access-borehole drilling in shelf glaciers using lightweight drills[J]. Journal of Glaciology, 2014,60(223):935-944.
    [43] Aamot H W C. A buoyancy-stabilized hot-point drill for glacier studies[J]. Journal of Glaciology, 1968,7(51):493-498.
    [44] Classen D F. Thermal drilling and deep ice-temperature measurements on the Fox Glacier, Yukon[D]. Vancouver: The University of British Columbia, Department of Geophysics, 1970.
    [45] Hooke R L. University of Minnesota ice drill[C]//Ice-Core Drilling: Proceeding of the Symposium. University of Nebraska, Lincoln, USA, 1976.
    [46] Hooke R L, Alexander J E C, Gustafson R J. Temperature profiles in the Barnes Ice Cap, Baffin Island, Canada, and heat flux from the subglacial terrane[J]. Canadian Journal of Earth Sciences, 1980,17(9):1174-1188.
    [47] 柴麟,张凯,刘宝林,等.自动垂直钻井工具分类及发展现状[J].石油机械,2020,48(1):1-11.CHAI Lin, ZHANG Kai, LIU Baolin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020,48(1):1-11.
    [48] 韩来聚,倪红坚,赵金海,等.机械式自动垂直钻井工具的研制[J].石油学报,2008,29(5):766-768.HAN Laiju, NI Hongjian, ZHAO Jinmei, et al. Development of mechanical tool for automatic vertical drilling[J]. Acta Petrolei Sinica, 2008,29(5):766-768.
    [49] Morev V A, Pukhov V A, Yakovlev V M, et al. Equipment and technology for drilling in temperate glaciers[C]// Proceeding of the Second International Workshop/Symposium on Ice Drilling Technology. Calgary, Alberta, Canada, 1982.
    [50] Zagorodnov V S, Zotikov I A. Kernovoe burenie na Shpitsbergene, 40[R]. Akademiia Nauk SSSR, Institut Geografii, 1981.
    [51] Tyler S W, Holland D M, Zagorodnov V, et al. Using distributed temperature sensors to monitor an Antarctic ice shelf and sub-ice-shelf cavity[J]. Journal of Glaciology, 2013,59(215):583-591.
    [52] Sharp R P. Thermal regimen of firn on upper seward glacier, Yukon territory, Canada[J]. Journal of Glaciology, 1951,1(9):476-487,491.
    [53] Mathews W H. Glaciological research in Western Canada in 1956[J]. Canadian Alpine Journal, 1957,40:94-96.
    [54] Mathews W H. Vertical distribution of velocity in Salmon glacier, British Columbia[J]. Journal of Glaciology, 1959,3(26):448-454.
    [55] Grześ M. Non-cored hot point drills on Hans Glacier (Spitsbergen), method and first results[J]. Polish Polar Research, 1980,1(2-3):75-85.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李亚洲,孙友宏,冶宇霆,等.冰层热融钻具倾斜原因及防/纠斜方法浅析[J].钻探工程,2023,50(3):8-20.
LI Yazhou, SUN Youhong, YE Yuting, et al. A brief analysis of inclination causes and preventing/correcting methods for ice hot-point drills[J]. Drilling Engineering, 2023,50(3):8-20.

复制
分享
文章指标
  • 点击次数:703
  • 下载次数: 723
  • HTML阅读次数: 475
  • 引用次数: 0
历史
  • 收稿日期:2022-09-29
  • 最后修改日期:2023-03-06
  • 录用日期:2023-03-07
  • 在线发布日期: 2023-06-01
  • 出版日期: 2023-05-10
文章二维码