4/3/2025, 11:44:17 PM 星期四
基于PFC3D的地下连续墙槽壁稳定性模拟分析
CSTR:
作者:
作者单位:

1.中国水利水电第七工程局成都水电建设工程有限公司,四川 成都 611130;2.成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059

中图分类号:

TU473


Trench wall stability simulation for the diaphragm wall based on PFC3D
Author:
Affiliation:

1.Chengdu Hydroelectricity Construction Engineering Co., Ltd. of Sinohydro Bureau No.7 Company,Chengdu Sichuan 611130, China;2.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu Sichuan 610059, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对富水砂卵石层地下连续墙成槽过程中槽壁易发生失稳的问题,通过分析相关的研究资料,在明确失稳形式及机理的基础上,设计了改变流速和粒径比的两种模拟试验方案,采用PFC3D颗粒流软件分析了渗流对土颗粒间性质变化的影响。数值模拟结果表明:流速对于颗粒的位移有很大的影响。流速越快,颗粒位移越大,孔隙率越高,墙体所受应力也越大;粒径比对于颗粒的位移同样有很大影响,其表现的作用与流速相似;在有侧限的情况下,颗粒的x向位移在达到极限后会产生z向的分量,使得颗粒向上位移。在实际工程中就意味着在颗粒位移达到一定程度,必然会突破泥膜,导致土体内细颗粒的流失,土体孔隙率增大,最终使得槽壁发生垮塌。

    Abstract:

    In view of the problem that the trench wall for the diaphragm wall is prone to failure in the process of trench-digging in water rich sand pebble formation, two simulation test schemes are designed with either change of the flow velocity or the particle size ratio by analyzing the relevant research data and on the basis of defining the failure form and mechanism. The numerical simulation results show that the flow velocity has a great influence on the displacement of particles. The faster the flow velocity, the greater the particle displacement, the higher the porosity, and the greater the stress on the wall. The particle size ratio also has a great influence on the displacement of particles, and its effect is similar to that of flow velocity. When there is a lateral limit, the x-direction displacement of the particles will produce a z-direction component after reaching the limit, making the particles move upward. In practical works, it means that when the particle displacement reaches a certain degree, it will inevitably break through the mud film, resulting in the loss of fine particles in the soil, the increase of soil porosity, and finally the collapse of the trench wall.

    参考文献
    [1] 路乾,胡长明,王晓华,等.地下连续墙成槽施工槽壁整体稳定性分析[J].地下空间与工程学报,2021,17(3):864-871.LU Qian, HU Changming, WANG Xiaohua, et al. Analysis on the overall stability of trenching construction of diaphragm wall[J]. Chinese Journal of Underground Space and Engineering, 2021,17(3):864-871.
    [2] 李小青,潘鸿宝.成槽作业中泥浆的护壁作用分析[J].探矿工程,2001(4):21-23.LI Xiaoqing, PAN Hongbao. Analysis of the wall protection function of mud in trenching operations[J]. Exploration Engineering, 2001(4):21-23.
    [3] 张涛,陈礼仪,彭建华,等.深基坑围护超深地下连续墙护壁泥浆的研究及应用[J].探矿工程(岩土钻掘工程),2013,40(2):68-70.ZHANG Tao, CHEN Liyi, PENG Jianhua, et al. Research on slurry in ultra deep underground continuous wall for deep foundation pit bracing[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2013,40(2):68-70.
    [4] 孙立宝.超深地下连续墙施工中若干问题探讨[J].探矿工程(岩土钻掘工程),2010,37(2):51-55.SUN Libao. Discussion on the construction of super-deep underground diaphragm wall[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010,37(2):51-55.
    [5] 孙晓科.富水含砂地层中地下连续墙施工技术[J].市政技术,2015,33(2):180-185.SUN Xiaoke. Construction technology of diaphragm wall in water-rich sand stratum[J]. Journal of Municipal Technology, 2015,33(2):180-185.
    [6] 丁勇春,李光辉,程泽坤,等.地下连续墙成槽施工槽壁稳定机制分析[J].岩石力学与工程学报,2013,32(S1):2704-2709.DING Yongchun, LI Guanghui, CHENG Zekun, et al. Analysis of trench face stability of diaphragm wall panel during slurry trenching[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(S1):2704-2709.
    [7] 曹豪荣,彭立敏,雷明锋,等.地下连续墙槽壁失稳模式及其稳定性计算方法研究现状[J].铁道科学与工程学报,2019,16(7):1743-1750.CHAO Haorong, PENG Limin, LEI Mingfeng, et al. Research status of the instability mode and its stability calculation method of underground diaphragm wall[J]. Journal of Railway Science and Engineering, 2019,16(7):1743-1750.
    [8] 李志文,魏刚,郭运华,等.超深地下连续墙施工槽壁局部稳定判据[J].水利水电快报,2021,42(4):49-53,58.LI Zhiwen, WEI Gang, GUO Yunhua, et al. A new stability criterion of trench wall in constructing superdeep diaphragm wall[J]. Express Water Resources & Hydropower Information, 2021,42(4):49-53,58.
    [9] 刘杨,刘维,史培新,等.超深地连墙成槽富水软弱层局部失稳理论研究[J].岩土力学,2020,41(S1):10-18.LIU Yang, LIU Wei, SHI Peixin, et al. Local instability analysis of the ultra-deep wall-to-slotted in water rich soft layer[J]. Rock and Soil Mechanics, 2020,41(S1):10-18.
    [10] 李毅阳,李新平,郭运华,等.基于泥膜压力平衡的地连墙槽壁稳定判据研究[J].土工基础,2021,35(4):482-486.LI Yiyang, LI Xinping, GUO Yunhua, et al. Diaphragm wall stability based on pressure balance of slurry[J]. Soil Engineering and Foundation, 2021,35(4):482-486.
    [11] 姜厚停,周秀普,李志强,等.厚卵石地层地下连续墙槽壁失稳机理及护壁泥浆性能研究[J].市政技术,2019,37(6):220-223.JIANG Houting, ZHOU Xiupu, LI Zhiqiang, et al. Study on instability mechanism of diaphragm wall and the performance of wall-protecting slurry in thick pebble formation[J]. Journal of Municipal Technology, 2019,37(6):220-223.
    [12] 殷超凡,邓稀肥,王圣涛,等.地铁超深地下连续墙槽壁稳定性综合化数值仿真[J].地下空间与工程学报,2021,17(S1):312-320.YIN Chaofan, DENG Xifei, WANG Shengtao, et al. Trench stability analysis of ultra-deep diaphragm wall in the subway station through comprehensive numerical simulation[J]. Chinese Journal of Underground Space and Engineering, 2021,17(S1):312-320.
    [13] 周忠群,张孟喜,王鑫,等.含双承压水地层中地连墙槽壁稳定性有限元分析[J].水力发电,2021,47(12):35-41.ZHOU Zhongqun, ZHANG Mengxi, WANG Xin, et al. Finite element analysis of trench stability of diaphragm wall in the formation with double confined water[J]. Water Power, 2021,47(12):35-41.
    [14] 邱明明,杨果林,申权,等.深厚砂层地下连续墙槽壁稳定性特征及影响因素研究[J].铁道科学与工程学报,2020,17(5):1129-1139.QIU Mingming, YANG Guolin, SHEN Quan, et al. Study on characteristics and influence factors of slurry trench stability of diaphragm wall in deep sandy stratum[J]. Journal of Railway Science and Engineering, 2020,17(5):1129-1139.
    [15] 石崇,张强,王盛年.颗粒流(PFC5.0)数值模拟技术及应用[M].北京:中国建筑工业出版社,2018.SHI Chong, ZHANG Qiang, WANG Shengnian. Numerical Simulation Technology and Application of Particle Flow (PFC5.0)[M]. Beijing: China Architecture & Building Press, 2018.
    [16] 王宇.基于流固耦合理论的管涌侵蚀机理细观数值模拟[D].西安:西安理工大学,2020.WANG Yu. Numerical simulation of piping erosion mechanismbased on fluid-solid coupling theory[D]. Xi’an: Xi’an University of Technology, 2020.
    [17] 王月明.隧道断层带土石混合体渗流特性研究[D].徐州:中国矿业大学,2020.WANG Yueming. Study on seepage characteristics of earth-rock mixture in tunnel fault zone[D]. Xuzhou: China University of Mining and Technology, 2020.
    [18] 姜伟.渗流作用下盾构隧道端头土体的稳定性研究[D].烟台:鲁东大学,2019.JIANG Wei. Study on stability of soil at end of shield tunnel under seepage[D]. Yantai: Ludong University, 2019.
    [19] 郑刚,戴轩,张晓双.地下工程漏水漏砂灾害发展过程的试验研究及数值模拟[J].岩石力学与工程学报,2014,33(12):2458-2471.ZHENG Gang, DAI Xuan, ZHANG Xiaoshuang. Experimental study and numerical simulation of leakingprocess of sand and water in underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2014,33(12):2458-2471.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何烨,周昌军,何鑫,等.基于PFC3D的地下连续墙槽壁稳定性模拟分析[J].钻探工程,2023,50(3):152-158.
HE Ye, ZHOU Changjun, HE Xin, et al. Trench wall stability simulation for the diaphragm wall based on PFC3D[J]. Drilling Engineering, 2023,50(3):152-158.

复制
分享
文章指标
  • 点击次数:478
  • 下载次数: 636
  • HTML阅读次数: 378
  • 引用次数: 0
历史
  • 收稿日期:2022-07-02
  • 最后修改日期:2022-10-18
  • 录用日期:2022-11-10
  • 在线发布日期: 2023-06-01
  • 出版日期: 2023-05-10
文章二维码