4/12/2025, 1:44:26 PM 星期六
基于cohesive单元海域天然气水合物储层水力压裂模拟
CSTR:
作者:
作者单位:

1.中国地质科学院勘探技术研究所,河北 廊坊 065000;2.清华大学,北京 100083;3.中国地质调查局广州海洋地质调查局, 广东 广州 511466

中图分类号:

P634;TE37

基金项目:

国家重点研发计划项目“天然气水合物勘查开发技术联合研究”(编号:2018YFE0208200); 国家自然科学基金青年基金项目“海洋天然气水合物保压取样球阀密封失效机理及优化设计研究”(编号:42102352);中国地质调查局地质调查项目“深海钻探工程关键技术支撑”(编号:DD20221721)


Numerical simulation of hydrate reservoir hydraulic fracturing based on cohesive units
Author:
Affiliation:

1.Institute of Exploration Techniques, GAGS, Langfang Hebei 065000, China;2.Tsinghua University, Beijing 100083, China;3.Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou Guangdong 511466, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    天然气水合物作为一种高效清洁能源,广泛分布于我国南海海域的沉积地层中。我国先后于2017年和2020年成功开展了2次试开采,但由于海域天然气水合物特殊的赋存条件,单井水合物试采仍然面临着开采范围小、高产稳产时间短等问题。为了提高水合物的开采范围,基于cohesive单元进行了水合物储层二维水力压裂数值模型研究,比较了100 m×100 m和20 m×20 m两种模型的裂缝半长和宽度,得出了当注入压力为25 MPa时,压裂裂缝半长均为6 m,最大宽度分别为5.8、5.5 mm,构建尺寸较大的模型得出的实验结果更加准确。并且研究了裂缝宽度随注入时间的变化规律,随着注入压力和注入量的不断增加,初期裂缝宽度急速变大,后续在地应力和注入流体压力的共同作用下裂缝出现“阶梯式”的扩展规律。该研究在页岩气和煤层气等非常规能源储层水力压裂模型分析中得到了成功运用,为海域天然气水合物储层水力压裂提供一定的理论指导。

    Abstract:

    Natural gas hydrate is an efficient and clean energy, which is widely distributed in the sedimentary strata in the South China Sea. China has successfully carried out two trial productions in 2017 and 2020 respectively. However, due to the special occurrence conditions of marine natural gas hydrate, there are still some problems with single well trial production, such as small production range and short time for high and stable production. In order to improve the exploitation range of hydrate, the two-dimensional hydraulic fracturing numerical model is studied based on cohesive units. Through simulation, the half length and width of cracks of the two models 100m×100m and 20m×20m are compared. It is concluded that at the injection pressure of 30MPa, the half length of the crack is 6m for both models, and the maximum width is 5.8mm and 5.5mm respectively. The more accurate experimental results can be obtained by constructing a larger model. Moreover, the variation law of fracture width with injection time is studied. With the continuous increase of injection pressure and injection volume, the initial fracture width increases rapidly, and then the fracture propagates “step by step” under the action of in-situ stress and injection fluid pressure. The research has been successfully applied in the hydraulic fracturing model analysis of unconventional energy reservoirs such as shale gas, coalbed methane, and provides some technical guidance for marine natural gas hydrate reservoir hydraulic fracturing .

    参考文献
    [1] 宁伏龙,刘力,李实,等.天然气水合物储层测井评价及其影响因素[J].石油学报,2013,34(3):591-606.NING Fulong, LIU Li, LI Shi, et al. Well logging assessment of natural gas hydrate reservoirs and relevant influential factors[J]. Acta Petrol Sinica, 2013,34(3):591-606.
    [2] KLAUDA JEFFERY B, SANDLER STANLEY I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005,19(2):459-470.
    [3] 齐赟,孙友宏,李冰,等.近井储层改造对天然气水合物藏降压开采特性影响的数值模拟研究[J].钻探工程,2021,48(4):85-96.QI Yun, SUN Youhong, LI Bing, et al. Numerical simulation of the influence of reservoir stimulation in the near wellbore area on the depressurization production characteristics of natural gas hydrate reservoir[J]. Drilling Engineering, 2021,48(4):85-96.
    [4] Ruppel C D, Kessler J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2016,55(1):126-168.
    [5] 侯岳,刘春生,刘聃,等.海域天然气水合物浅软地层水平井钻井液技术[J].钻探工程,2022,49(2):16-21.HOU Yue, LIU Chunsheng, LIU Dan, et al. Drilling fluid technology for natural gas hydrate horizontal wells in marine shallow soft formation[J]. Drilling Engineering, 2022,49(2):16-21.
    [6] 叶建良,秦绪文,谢文卫,等.中国南海天然气水合物第二次试采主要进展[J].中国地质,2020,47(3):557-568.YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020,47(3):557-568.
    [7] KONNO Y, FUJII T, SATO A, et al. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production[J]. Energy & Fuels, 2017,31(3):2607-2616.
    [8] 左汝强,李艺.日本南海海槽天然气水合物取样调查与成功试采[J].探矿工程(岩土钻掘工程),2017,44(12):1-20.ZUO Ruqiang, LI Yi. Japan’s sampling study and successful production test for NGH in Nankai Trough[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2017,44(12):1-20.
    [9] 孟奕龙,陈晨,马英瑞,等.神狐海域天然气水合物智能拟合建模与开采研究[J].钻探工程,2021,48(S1):315-320.MENG Yilong, CHEN Chen, MA Yingrui, et al. Study on intelligent fitting modeling and exploitation of natural gas hydrate in the Shenhu area[J]. Drilling Engineering, 2021,48(S1):303-308.
    [10] LI Jinfa, YE Jianliang, QIN Xuwen, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018,1(1):5-16.
    [11] 杜垚森,冯起赠,许本冲,等.海域天然气水合物试采研究现状及存在问题[J].探矿工程(岩土钻掘工程),2018,45(4):6-9.DU Yaosen, FENG Qizeng, XU Benchong, et al. Research status and existing problems in oceanic gas hydrate trial production[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(4):6-9.
    [12] 姚远欣,李栋梁,梁德青.天然气水合物储层水力压裂研究进展[J].新能源进展,2020,8(4):282-290.YAO Yuanxin, LI Dongliang, LIANG Deqing. Research progress on hydraulic fracturing of natural gas hydrate reservoir[J]. Advances in New and Renewable Energy, 2020,8(4):282-290.
    [13] Goel N, Wiggins M, Shah S. Analytical modeling of gas recovery from in situ hydrates dissociation[J]. 2001,29(2):115-127.
    [14] 张永勤,李鑫淼,李小洋,等.冻土天然气水合物开采技术进展及海洋水合物开采技术方案研究[J].探矿工程(岩土钻掘工程),2016,43(10):154-159.ZHANG Yongqin, LI Xinmiao, LI Xiaoyang, et al. Technical progress of gas hydrate production in permafrost and research on oceanic gas hydrate production[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016,43(10):154-159.
    [15] 彭赛宇,马纪英,孙友宏,等.天然气水合物储层改造泡沫水玻璃浆液及其固结体性能研究[J].中南大学学报(自然科学版),2022,53(3):1001-1011.PENG Saiyu, MA Jiying, SUN Youhong, et al. Research on performance of foamed water glass slurry and its consolidation for gas hydrate reservoir stimulating[J]. Journal of Central South University (Science and Technology), 2022,53(3):1001-1011.
    [16] KONNO Y, JIN Yusuke, YONEDA J, et al. Hydraulic fracturing in methane-hydrate-bearing sand[J]. RSC Advances, 2016,6(77):73148-73155.
    [17] 张然,李根生,朱海燕.水平多裂缝交错扩展及其诱导应力干扰研究[J].西南石油大学学报(自然科学版),2017,39(1):91-99.ZHENG Ran, LI Gensheng, ZHU Haiyan. Dynamic propagation of multiple horizontal fractures and mutual interference between induced stresses[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017,39(1):91-99.
    [18] Liu Y, Tang D, Hao X, et al. The impact of coal macrolithotype on hydraulic fracture initiation and propagation in coal seams[J]. Journal of Natural Gas Science and Engineering, 2018,56:299-314.
    [19] GUO Jianchun, ZHAO Xing, ZHU Haiyan, et al. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science and Engineering,2015,25:180-188.
    [20] CHEN Zuorong. Finite element modelling of viscosity-dominated hydraulic fractures[J]. Journal of Petroleum Science and Engineering, 2012,88-89(1):136-144.
    [21] ZOU Junpeng, CHEN Weizhong, YUAN Jingqiang, et al. 3-D numerical simulation of hydraulic fracturing in a CBM reservoir[J]. Journal of Natural Gas Science and Engineering, 2017,37:386-396.
    [22] 李小杰,叶成明,李炳平,等.基岩水井水力压裂专用压裂液试验研究[J].探矿工程(岩土钻掘工程),2016,43(10):234-237.LI Xiaojie, YE Chengming, LI Bingping, et al. Research on hydraulic fracturing fluid in bedrock water well[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016,43(10):234-237.
    [23] GONG D G, QU Z Q, LI J X, et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics, 2016,37(5):1512-1520.
    [24] 张晓咏,戴自航.应用ABAQUS程序进行渗流作用下边坡稳定分析[J].岩石力学与工程学报,2010,29(S1):2927-2934.ZHANG Xiaoyong, DAI Zihang. Analysis of slope stability under seepage by using ABAQUS program[J]. Chinese Journal of Rock Mechanics and Engineering, 2010,29(S1):2927-2934.
    [25] Zienkiewicz O C,Taylor R L. The Finite Element Method: An Introduction with Partial Differential Equations[M]. Burlington: Elsevier, 2005:42-45.
    [26] Lijith K.P., Malagar B.R. C., Singh D.N. A comprehensive review on the geomechanical properties of gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 2019,104:270-285.
    [27] WILLIAM WAITE, MICHAEL B, HELGERUD, et al. Laboratory measurements of compressional and shear wave speeds through methane hydrate[J]. Annals of the New York Academy of Sciences, 2000,912(1):1003-1010.
    [28] DVORKIN, HELGERUD, WAITE, et al. Introduction to Physical Properties and Elasticity Models[M]. Springer Netherlands, 2003.
    [29] SHENG DAI, YONGKOO SEOL. Water permeability in hydrate-bearing sediments: A pore‐scale study[J]. Geophysical Research Letters, 2014,41(12):4176-4184.
    [30] Kumar A, Maini B, Bishnoi P R, et al. Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media[J]. Journal of Petroleum Science & Engineering, 2010,70(1-2):114-122.
    [31] Johnson A, Patil S, Dandekar A. Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope[J]. Marine and Petroleum Geology, 2011,28(2):419-426.
    [32] Kleinberg R L, Flaum C, Griffin D D, et al. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability(abstract)[J]. Journal of Geophysical Research, 2003,108(B10):1201-1217.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋亚峰,田英英,李小洋,等.基于cohesive单元海域天然气水合物储层水力压裂模拟[J].钻探工程,2023,50(1):18-25.
JIANG Yafeng, TIAN Yingying, LI Xiaoyang, et al. Numerical simulation of hydrate reservoir hydraulic fracturing based on cohesive units[J]. Drilling Engineering, 2023,50(1):18-25.

复制
分享
文章指标
  • 点击次数:718
  • 下载次数: 736
  • HTML阅读次数: 706
  • 引用次数: 0
历史
  • 收稿日期:2022-05-19
  • 最后修改日期:2022-08-30
  • 录用日期:2022-10-13
  • 在线发布日期: 2023-02-13
  • 出版日期: 2023-01-10
文章二维码