4/4/2025, 4:00:05 PM 星期五
不同初始饱和度红砂岩冻融后物理力学性质研究
CSTR:
作者:
作者单位:

吉林大学建设工程学院,吉林 长春 130026

作者简介:

沈世伟,男,汉族,1982年生,博士,副教授,研究方向为隧道与地下工程,吉林省长春市西民主大街938号,ssw2580@jlu.edu.cn。

通讯作者:

吴飞,男,汉族,1995年生,硕士研究生,研究方向为隧道与地下工程,吉林省长春市西民主大街938号,1262315977@qq.com。

中图分类号:

P584;TU45

基金项目:

国家自然科学基金青年基金资助项目“爆生气体作用下岩石裂纹的力学行为及扩展模型研究”(编号:41502270)


Study on physical and mechanical properties of red sandstone with different initial saturation after freeze-thaw
Author:
Affiliation:

College of Construction Engineering, JiLin University, Changchun Jilin, 130026, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对不同初始饱和度红砂岩冻融循环前后进行物理及力学试验研究,探讨初始饱和度对红砂岩冻融损伤的影响。本文设定红砂岩试样初始饱和度为20%、40%、60%、80%、100%,冻融次数设定为20次,对冻融前后试样分别测定质量、纵波波速以及进行单轴压缩试验。试验结果表明:(1)冻融后不同初始饱和度红砂岩的物理性质发生变化,纵波波速降低、质量损失率增大,但变化程度不同;(2)随饱和度的增大,试样经冻融后峰值强度和弹性模量均呈降低趋势,但只有饱和度>60%时,降低趋势较明显;(3)随饱和度增大,试样冻融系数逐渐减小。本文研究为寒区边坡工程治理、地下工程建设以及岩土地质灾害监测与治理提供理论依据和试验基础。

    Abstract:

    The effects of initial saturation on freeze-thaw damage on red sandstone were studied by physical and mechanical experiments before and after freeze-thaw cycles. The initial saturation of the red sandstone samples was set as 20%, 40%, 60%, 80% and 100%, and the number of freeze-thaw cycles was set as 20. The mass and p-wave velocity were measured, and uniaxial compression tests were conducted of the sample before and after freeze-thaw respectively. The experimental results showed that: (1)After freeze-thaw, the physical properties of red sandstone with different initial saturation have changed with the p-wave velocity decreasing, and the mass loss rate increasing. (2)With the increase of saturation, the uniaxial compressive strength and elastic modulus of the sample tend to decrease after freeze-thaw, but only when the saturation is greater than 60%, the decreasing trend is more obvious. (3)With the increase of saturation, the freeze-thaw coefficient decreases gradually. The study can provide theoretical basis and experimental basis for construction of geotechnical works and monitoring and control of geo-hazards in the cold region.

    参考文献
    [1] 宋勇军,张磊涛,任建喜,等.冻融后循环荷载作用下红砂岩力学特性试验研究[J].煤炭工程,2019,51(2):112-117.
    [2] 王俐. 不同初始含水率红砂岩冻融损伤的试验研究及其机理分析[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.
    [3] 郭海桥,程伟,尚志,等.水分和冻融循环对酷寒矿区煤矸石风化崩解速率影响的定量研究[J].煤炭学报,2019,44(12):3859-3864.
    [4] 孟祥振,张慧梅,康晓革.含孔隙冻融岩石的损伤本构模型[J].西安科技大学学报,2019,39(4):688-692.
    [5] 高峰,曹善鹏,熊信,等.冻融循环作用下受荷青砂岩的脆性演化特征[J].岩土力学,2020,41(2):445-452.
    [6] 郑广辉,许金余,王鹏,等.冻融循环作用下层理砂岩物理特性及劣化模型[J].岩土力学,2019,40(2):632-641.
    [7] 刘艳章,郭赟林,黄诗冰,等.冻融作用下裂隙类砂岩断裂特征与强度损失研究[J].岩土力学,2018,39(S2):62-71.
    [8] 张二锋,杨更社,刘慧.冻融循环作用下砂岩细观损伤演化规律试验研究[J].煤炭工程,2018,50(10):50-55.
    [9] 高峰,熊信,周科平,等.冻融循环作用下饱水砂岩的强度劣化模型[J].岩土力学,2019,40(3):926-932.
    [10] Bayram F. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions[J]. Cold Reg. Sci. Technol., 2012(83-84):98-102.
    [11] Liu Q., Huang S., Kang Y., et al. A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze-thaw[J]. Cold Regions Sci. Technol., 2015(120):96-107.
    [12] 李杰林,朱龙胤,周科平,等.冻融作用下砂岩孔隙结构损伤特征研究[J].岩土力学,2019,40(9):3524-3532.
    [13] Jamshidi A., Nikudel M.R., Khamehchiyan M. Predicting the long-term durability of building stones against freeze-thaw using a decay function model[J]. Cold Reg. Sci. Technol., 2013(92):29-36.
    [14] 杨更社,申艳军,贾海梁,等.冻融环境下岩体损伤力学特性多尺度研究及进展[J].岩石力学与工程学报,2018,37(3):545-563.
    [15] 金佳旭,宋晨光,陈亿军,等.冻融循环次数和含水率对尾细砂力学性质的影响研究[J].实验力学,2017,32(3):431-438.
    [16] 裴向军,蒙明辉,袁进科,等.干燥及饱水状态下裂隙岩石冻融特征研究[J].岩土力学,2017,38(7):1999-2006.
    [17] Chen T.C., Yeung M.R., Mori N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Reg. Sci. Technol. , 2004,38(2):127-136.
    [18] Zhang S J, Lai Y M, Zhang X F, et al. Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze-thaw cycle condition[J]. Tunnelling and Underground Space Technology, 2004,19(3):295-302.
    [19] Hori M. Micromechanical analysis on deterioration due to freezing and thawing in porous brittle materials[J]. Int. J. Eng. Sci., 1998,36(4): 511-522.
    [20] Park C, Synn J H, Shin H S. Experimental study on the thermal characteristics of rock at low temperatures[J]. International Journal of Rock Mechanics and Mining Science, 2004,41(3):81-86.
    [21] Zhang X F, Lai Y M, Yu W B. Forecast analysis of the refreezing of Kunlun mountain permafrost tunnel on Qinghai-Tibet railway in China[J]. Cold Regions Science and Technology, 2004,39(1):19-31.
    [22] GB/T 50266-2013,工程岩体试验方法标准[S].
    [23] 张慧梅,杨更社.冻融岩石损伤劣化及力学特性试验研究[J].煤炭学报,2013,38(10):1756-1762.
    [24] Momeni A., Abdilor Y., Khanlar G. R., et al. The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks[J]. Bull. Eng. Geol. Environ., 2016(75):1649-1656.
    [25] 胡鹏飞,骆行文,卢正,等.不同初始含水率砂质泥岩膨胀特性试验研究[J].公路,2020,65(7):256-261.
    [26] 张艺鑫.兰州地区红砂岩物理力学性能及渗透性研究[D].兰州:兰州理工大学,2018.
    [27] 张慧梅,杨更社.冻融荷载耦合作用下岩石损伤力学特性[J].工程力学,2011,28(5):161-165.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈世伟,吴飞,甘霖,等.不同初始饱和度红砂岩冻融后物理力学性质研究[J].钻探工程,2021,48(1):120-128.
SHEN Shiwei, WU Fei, GAN Lin, et al. Study on physical and mechanical properties of red sandstone with different initial saturation after freeze-thaw[J]. Drilling Engineering, 2021,48(1):120-128.

复制
分享
文章指标
  • 点击次数:789
  • 下载次数: 843
  • HTML阅读次数: 1031
  • 引用次数: 0
历史
  • 收稿日期:2020-10-16
  • 最后修改日期:2020-11-01
  • 在线发布日期: 2021-01-27
  • 出版日期: 2021-01-10
文章二维码