4/4/2025, 6:42:27 AM 星期五
深部地质钻探钻遇弱面地层井孔围岩稳定分析
CSTR:
作者:
作者单位:

中国地质大学(北京)工程技术学院

中图分类号:

P634.1

基金项目:

国家重点研发计划项目“5000米智能地质钻探技术装备研发及应用示范”课题一“大深度地质钻探技术装备集成及示范”(编号:2018YFC0603401)


Deep geodrilling borehole stability analysis in anisotropic formations
Author:
Affiliation:

School of Engineering and Technology, China University of Geosciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    深部地层地质条件复杂,随钻探向纵深发展,钻遇弱面地层导致井孔围岩失稳将严重影响工程进程。本文总结分析具有弱面地层岩石物理力学特性,探讨强度各向异性孔壁围岩稳定模型的适用性;考虑流体向弱面渗透存在渗透各向异性和传热各向异性,发展了具有弱面地层井孔围岩稳定理论。研究发现,某些强度各向异性模型在特定情况下可能失去其适用性;在深部高温环境下忽略弱面地层渗透和热传的各向异性特征可能会导致井孔围岩压力、破坏区域以及坍塌压力产生较大误差。

    Abstract:

    The geological conditions in deep formations are very complex, especially in bedding strata. Nowadays, with increase in drilling depth, the instability of the borehole caused by the failure of weak planes will seriously affect the drilling progress. In this paper, the physical and mechanical properties of rocks with weak planes are summarized and analyzed, and the applicability of strength anisotropy models are discussed. Considering the permeability anisotropy and heat transfer anisotropy of the rocks with weak planes, the specific borehole stability theory is further developed for the surrounding rock with weak planes. It is found that some strength anisotropic models may lose their applicability under certain circumstances; furthermore, neglect of the anisotropic characteristics of the permeability and heat transfer of the weak-plane rocks in the deep strata in the high temperature environment may lead to big errors in the calculation of stresses, failure area and collapse pressure of the borehole.

    参考文献
    [1]丁立钦, 王志乔, 吕建国等. 基于围岩本体Mogi-Coulomb强度准则的层理性岩层斜井井壁稳定模型[J]. 岩石力学与工程学报, 2017a, 36(03): 622–632
    [2]Jaeger J C. Shear Failure of Anistropic Rocks[J]. Geological Magazine, 1960, 97(1): 65–72.
    [3]Chenevert M E, Gatlin C. Mechanical Anisotropies of Laminated Sedimentary Rocks[J]. SPE-890-PA, 1965.
    [4]Aadnoy B S. Modelling of the Stability of Highly Inclined Boreholes in Anisotropic Rock Formations[A]. SPE-16526-MS[C]. SPE: Society of Petroleum Engineers, 1987.
    [5]丁立钦, 王志乔, 王瑜等. 层理性地层钻井稳定性分析模型[J]. 探矿工程(岩土钻掘工程), 2017b, 44(03): 1–9.
    [6]Rice J R, Cleary M P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J]. Reviews of Geophysics, 1976, 14(2): 227.
    [7]Detournay E, Cheng A H-D. Poroelastic Response of a Borehole in a Non-hydrostatic Stress Field[J]. 1988: 12.
    [8]邓金根, 刘杨, 蔚宝华, 等. 高温高压地层破裂压力预测方法[J]. 石油钻探技术, 2009, 37(05): 43–46.
    [9]Wu B, Zhang X, Jeffrey R G, et al. A semi-analytic solution of a wellbore in a non-isothermal low-permeability porous medium under non-hydrostatic stresses[J]. International Journal of Solids and Structures, 2012, 49(13): 1472–1484.
    [10]吴怡, 谢仁军, 刘书杰, 等. 考虑温度效应的高温高压直井井壁稳定性规律[J]. 断块油气田, 2019, 26(02): 253–256.
    [11]Ding L, Wang Z, Liu B, et al. Assessing borehole stability in bedding-parallel strata: Validity of three models[J]. Journal of Petroleum Science and Engineering, 2019a, 173: 690–704.
    [12]Ding L, Wang Z, Liu B, 等. Borehole stability analysis: A new model considering the effects of anisotropic permeability in bedding formation based on poroelastic theory[J]. Journal of Natural Gas Science and Engineering, 2019b, 69: 102932.
    [13]Ding L, Wang Z, Wang Y, et al. Thermo-poro-elastic analysis: The effects of anisotropic thermal and hydraulic conductivity on borehole stability in bedding formations[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107051.
    [14]Labiouse V, Vietor T. Laboratory and In Situ Simulation Tests of the Excavation Damaged Zone Around Galleries in Opalinus Clay[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 57–70.
    [15]Meier T, Rybacki E, Backers T, et al. Influence of Bedding Angle on Borehole Stability: A Laboratory Investigation of Transverse Isotropic Oil Shale[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1535–1546.
    [16]McLellan P J, Cormier K. Borehole instability in fissile, dipping shales, northeastern british columbia[A]. SPE-35634-MS[C]. SPE: Society of Petroleum Engineers, 1996: 13.
    [17]Metwally Y M, Sondergeld C H. Measuring low permeabilities of gas-sands and shales using a pressure transmission technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7): 1135–1144.
    [18]Burger R L, Belitz K. Measurement of anisotropic hydraulic conductivity in unconsolidated sands: A case study from a shoreface deposit, Oyster, Virginia[J]. Water Resources Research, 1997, 33(6): 1515–1522.
    [19]Kwon O, Herbert B E, Kronenberg A K. Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally connected pores[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B10).
    [20]Clavaud J-B, Maineult A, Zamora M, et al. Permeability anisotropy and its relations with porous medium structure[J]. Journal of Geophysical Research, 2008, 113(B1).
    [21]Mokhtari M, Tutuncu A N. Characterization of anisotropy in the permeability of organic-rich shales[J]. Journal of Petroleum Science and Engineering, 2015, 133: 496–506.
    [22]Kappelmeyer O, Haenel R. Geothermics with Special Reference to Application[M]. 1974.
    [23]Deming D, Sass J H, Lachenbruch A H, et al. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska[J]. 1992, 104(5): 528–542.
    [24]Davis M G, Chapman D S, Van Wagoner T M, et al. Thermal conductivity anisotropy of metasedimentary and igneous rocks[J]. Journal of Geophysical Research, 2007, 112(B5): B05216.
    [25]Chen G J, Sillen X, Verstricht J, et al. ATLAS III in situ heating test in boom clay: Field data, observation and interpretation[J]. Computers and Geotechnics, 2011, 38(5): 683–696.
    [26]Dao L Q, Delage P, Tang A M, et al. Anisotropic thermal conductivity of natural Boom Clay[J]. Applied Clay Science, 2014, 101: 282–287.
    [27]Labus M, Labus K. Thermal conductivity and diffusivity of fine-grained sedimentary rocks[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(3): 1669–1676.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁立钦,王志乔,凌雪,等.深部地质钻探钻遇弱面地层井孔围岩稳定分析[J].钻探工程,2020,47(4):122-128.
DING Liqin, WANG Zhiqiao, LING Xue, et al. Deep geodrilling borehole stability analysis in anisotropic formations[J]. Drilling Engineering, 2020,47(4):122-128.

复制
分享
文章指标
  • 点击次数:1125
  • 下载次数: 962
  • HTML阅读次数: 233
  • 引用次数: 0
历史
  • 收稿日期:2020-02-21
  • 最后修改日期:2020-04-08
  • 录用日期:2020-04-07
  • 在线发布日期: 2020-05-02
文章二维码