4/6/2025, 1:03:16 AM 星期日
基于模式识别理论的卡钻类型判别分析
CSTR:
作者:
作者单位:

中国石化重庆涪陵页岩气勘探开发有限公司,中国石化石油工程技术研究院,中国石化重庆涪陵页岩气勘探开发有限公司

中图分类号:

P634.8

基金项目:

中石化科技攻关项目“页岩气‘井工厂’技术研究”(编号:P13138)


Discriminant Analysis on Sticking Based on Pattern Recognition Theory
Author:
Affiliation:

The Exploration and Production of Shale Gas Chongqing Fuling, SINOPEC,SINOPEC Institute of Petroleum Engineering,The Exploration and Production of Shale Gas Chongqing Fuling, SINOPEC

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    将模式识别理论中的支持向量机、Bayes判别分析以及多元回归分析应用于卡钻类型判别分析,建立了基于模式识别理论的卡钻判别模型。以近几年川东北卡钻数据为例进行了算例分析,结果表明:采用支持向量机、Bayes判别法及多元回归法对卡钻类型判别的结果与实际结果的误判率分别为1.92%,11.52%,61.54%。支持向量机(SVM)判别结果精度最高,但其判别方程式较为复杂,不能直观看出各分量对结果的影响程度;多元回归分析判别方程形式简单,可以直观表达各参量与卡钻之间的密切程度,但其判别精度较低;Bayes判别法计算精度介于二者之间,但其判别精度与判别式的个数密切相关。

    Abstract:

    The Support Vector Machine (SVM), Bayes discriminant analysis and multiple regression analysis were used for diagnosis and prediction of sticking. The discriminant model of stick type was built based on pattern recognition theory. The calculation analysis on the sticking data of northeastern Sichuan was made, it was indicated that the misjudgment rate for discriminant result of SVM, Bayes discriminant analysis and multiple regression analysis was 1.92%, 11.52% and 61.54%. The accuracy of SVM recognition result was the highest, but its discriminant equation is complex and the contribution of each component to the result could not be intuitively seen; while the equation of multiple regression analysis is simple, which could intuitively show the close degree between each component and sticking, but the accuracy of recognition result was lower. The accuracy of Bayes discriminant analysis was between the above two, but the discriminant accuracy is closely related to the number of discriminant.

    参考文献
    [1]边肇祺,张学工.模式识别(第二版)[M],北京:清华大学出版社,2007:32-51.
    [2]阎铁,毕雪亮,王长江.基于支持向量机和聚类分析理论的钻具失效分析方法[J].石油学报,2007,28(3):135-140
    [3]石广仁.支持向量机在多地质因素分析中的应用[J].石油学报,2008,29(2):195-199
    [4]李建军,丁正生,张海燕.常用判别分类方法分析[J].西安科技大学学报,2007,27(1):138-142
    [5]罗刚,艾志久,王其华,等.基于模糊数学卡钻事故安全评价体系研究[J].西南石油大学学报,2007,29(6):118-122
    [6]陈晖,沈小翠.卡钻事故诊断仿真系统研究[J].石油机械,2009,37(7):55-57.
    [7]张林强.井下卡钻分析及处理,海洋石油,2007,(9):112-116
    [8]Vapnik V N.The nature of statistical learning theory[M]. Translated by zhang xuegong.bejing: Tsinghua university press,2000:85-205.
    [9]严丽,王燕,范树平.多元回归分析方法预测川东北礁滩相储层产能[J].新疆石油天然气,2011,7(4):37-40
    [10]顾和元,侯国庆,吴占伟.基于动态贝叶斯网络的深水防喷器可靠性研究[J].石油机械,2013,41(3):36-39.
    [11]韦明辉,黄海龙,韦忠良,等.基于支持向量机的钻井风险实时预测方法[J].钻采工艺,2012,35(5):15-17
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴军,臧艳彬,陈星星.基于模式识别理论的卡钻类型判别分析[J].钻探工程,2015,42(10):31-34.
WU Jun, ZANG Yan-bin, CHEN Xing-xing. Discriminant Analysis on Sticking Based on Pattern Recognition Theory[J]. Drilling Engineering, 2015,42(10):31-34.

复制
分享
文章指标
  • 点击次数:931
  • 下载次数: 1018
  • HTML阅读次数: 199
  • 引用次数: 0
历史
  • 收稿日期:2015-02-11
  • 最后修改日期:2015-08-01
  • 录用日期:2015-09-18
  • 在线发布日期: 2015-11-09
文章二维码