神经网络技术在路堤沉降预测中应用探讨
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U416.1 TP389.1

基金项目:


Study on Prediction of Post-construction Settlement of Expressway on Soft Ground with Neural Network Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的BP网络模型的不足,应用了改进的BP神经网络模型,把它应用到软基高速公路的路堤沉降预测中,提出了两种构造神经网络训练样本的思路,并分别进行了计算和对比,指出了各自的优、缺点。结果表明改进的BP网络模型比较稳健、收敛快,而且根据时间与对应的沉降量形成的样本训练的网络预测出的工后沉降误差小、精度高。

    Abstract:

    Aimed at the insufficiency of traditional BP network, the improved BP neural network model is adopted to predict the post-construction settlement of expressway on soft ground. Two methods of forming the training samples are put forward, and their virtues and shortcomings are pointed out by calculations and analyses. It shows that the improved BP neural network model is steady and fast convergence. Furthermore, the network model trained by the samples from time and according settlement has least error and more accurate.

    参考文献
    相似文献
    引证文献
引用本文

宋茂天,王振宝,王志亮.神经网络技术在路堤沉降预测中应用探讨[J].钻探工程,2004,31(4):4-7.
SONG Mao-tian, WANG Zhen-bao, WANG Zhi-liang. Study on Prediction of Post-construction Settlement of Expressway on Soft Ground with Neural Network Model[J]. Drilling Engineering, 2004,31(4):4-7.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-09-17
  • 最后修改日期:2003-09-17
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码